Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Электродвигатель или ДВС? Плюсы и минусы двух технологий. Виды электрических двигателей и их преимущества Линейные асинхронные двигатели

Электродвигатель или ДВС? Плюсы и минусы двух технологий. Виды электрических двигателей и их преимущества Линейные асинхронные двигатели

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = (n1 — n2)/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Экономичность и надежность оборудования напрямую зависят от электродвигателя, поэтому его выбор требует серьезного подхода.

Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Сравнение двс и электрического двигателя - страница №1/1

Сравнение ДВС и электрического двигателя

Преимущества ДВС

1. Высокая дальность передвижения на одной заправке;

2. Малый вес и объем источника энергии (топливного бака).


Недостатки ДВС

1. Низкий средний КПД во время эксплуатации;

2. Высокое загрязнение окружающей среды;

3. Обязательное наличие КПП;

4. Отсутствие режима рекуперации энергии;

5. Работа ДВС подавляющую часть времени с недогрузом.


Преимущества электродвигателя:

1. Малый вес;

2. Максимальный момент доступный при 0 об/мин;

3. Нет необходимости в КПП;

4. Высокий КПД;

5. Возможность рекуперации энергии.

Недостатки электродвигателя:

1. Малое плечо на одной зарядке;

2. Долгая зарядка;

3. Малый срок службы батареи;

4. Большой объем и вес батареи.
Гибрид собрал преимущества и минимизировал недостатки обоих типов двигателей.

Преимущества гибрида:

1. Возможность рекуперации;

2. Большой пробег на одной заправке;

4. Максимальный момент доступный при 0 об/мин;

5. ДВС работает с большой степенью равномерности и большой степенью загрузки;

6. Высокий средний КПД;

7. Отсутствие КПП;

8. Высокие экологические показатели.


Недостатки гибрида

1. В автомобиле по сути установлены параллельно две силовые установки (правда каждая из них в усеченном варианте).

2. Проблемы электромобилей заключаются еще и в зиме. Для существующих АКБ низкие температуры не очень полезны. Если принять во внимание такой вот режим езды: Лето, автовладелец живет в своем доме или на стоянке, у него есть возможность заряжать батареи. Ночная зарядка до 100%. Заряда хватает на 200 км. пробега. Для города, в большинстве случаев, вполне достаточно. Хотя большинство проектов электромобилей рассчитывались на, примерно, 400 км. На сколько же хватит заряда? Летом в салоне работают свет, кондиционер, магнитола, а все они потребляют энергию, зимой проблема с обогревом.

3. Малый вес и объем источника энергии (топливный бак и ввб);

Однако батарея весом 80кг - это все-таки много, особенно если учесть, что ёмкость её невелика.

Всё «железо» было придумано примерно 100 лет назад. С тех пор появились новости ТОЛЬКО в электронике - здесь прогресс впечатляющий. А в механике, электротехнике практически ничего не происходит.

Прорывы возникают НА СТЫКЕ дисциплин. Так, например, всего лет пятнадцать назад появились промышленные изделия- транзисторы IGBT (биполярный транзистор с изолированным затвором - тоже своеобразный гибрид, сочетающий качества биполярного транзистора (возможность пропускать большую мощность) и полевого (управление полем(напряжением), а не током). Появление этих транзисторов сделало маленькую революцию- асинхронный электропривод (самый распространённый) стало можно сделать управляемым! Ранее управлялись только двигатели постоянного тока. А у них- обязательно имеются щётки, что сводило их применение, например, на автомобилях, к нулю.

(А теперь на Prius стоят бесщёточные трехфазные двигатели с постоянными магнитами на роторе (постоянные магниты на редкоземельных элементах - тоже новость "на стыке" физики и химии) и управляются инвертором на основе IGBT под управлением микропроцессора...)

Лет тридцать назад аналоговая электроника стала настолько надёжной, что её массово стали применять в системах зажигания. Далее все развивалось постепенно и вдруг оказалось, что микропроцессор гораздо лучше справляется с управлением режимами ДВС, чем любая аналоговая автоматика. Тоже маленькая революция, только от безмозглой автоматики типа "крючочек-пружинка" плавно перешли к программному управлению- а это означает, что РЕЖИМЫ двигателя определяет не конструктор, а программист, соответственно разработка/настройка/наладка резко упрощается и удешевляется

А на Prius этих контроллеров уже штук пять-семь, а на 20ке они соединены по стандартной шине для обмена информацией между управляющими контроллерами (CAN), и контролируют не только ДВС, а и вращение каждого колеса- и сразу возникает возможность простой (дешевой в разработке) программной реализации антипробуксовочной /антиблокировочной/курсовой устойчивости и т.д. и т.п...- то есть обеспечение АКТИВНОЙ БЕЗОПАСНОСТИ автомобиля.


Автомобиль превратился в... обычное для современной промышленности автоматическое устройство с программным управлением. И неслучайно это произошло в первую очередь с гибридным автомобилем. (Хотя и другие машины ведущих производителей также стремительно насыщаются микропроцессорной техникой- то есть интеллектуальным управлением). Дело в том, что гибрид был бы невозможен без программного управления (возможен, конечно, но не было бы большого эффекта). Поскольку человек не в состоянии отследить все события, происходящие тысячи раз в секунду в реальном масштабе времени, а вот микропроцессору это по силам. Гибриды - это разумный компромисс, получение максимума возможного из того, что есть ЗДЕСЬ и СЕЙЧАС.

Сравнивать электромобиль и гибрид не надо - это неправильно. Очевидно, что автомобиль на ископаемом топливе умрёт. Но ПОКА он не может умереть. Просто потому, что будет не на чем ездить. Потому, что НЕТ электромобилей приемлемых потребительских качеств - пробег, время заправки, комфорт, стоимость...

Начавшаяся в XX веке электрификация привела к появлению огромного количества полезных изобретений. Одним из них стал электродвигатель.

Мотор лишился механически трущихся и искрящих узлов, превзойдя многие популярные на то время разновидности приводов. На сегодняшний день существуют различные типы электродвигателей, что позволяет внедрить оптимальный вариант в ту или иную машину. Какие именно агрегаты считаются востребованными, в чём состоят их ключевые особенности?

Сразу стоит заметить, что двигатели грубо разделяют на два типа: постоянного и переменного тока. Поэтому мы будем рассматривать характерные особенности каждого из них.

Устройства постоянного тока

Такие агрегаты позволяют создавать регулируемые электроприводы с отличными эксплуатационными свойствами. Существует две категории двигателей, питающихся постоянным током: коллекторные и вентильные.

Первые характеризуются присутствием щёточно-коллекторного узла, который способствует электросоединению неподвижной и вращающей части агрегата. Бесколлекторные (вентильные) - это электродвигатели с замкнутой системой. Они работают так, как и синхронные. Такие агрегаты могут иметь любые габариты. Самыми маленькими оснащают ПК, игрушки и прочие приборы.

Электродвигатели постоянного тока применяются в различных сферах ввиду огромного количества положительных сторон:

  • простота управления и регулировки частоты вращения;
  • хорошие пусковые свойства;
  • компактность;
  • возможность использования в разных режимах.

Однако коллекторные приборы нуждаются в трудоёмком профилактическом сервисе. Да и стоимость производства агрегатов довольно высокая, что отражается на их цене.

Устройства переменного тока

Эти агрегаты делят на синхронные и асинхронные. Ключевое отличие в том, что в первых электродвигателях 1 гармоника магнитодвижущей силы стартера перемещается аналогично скорости ротора. У асинхронных поле вращается быстрее. И поскольку двигатели переменного тока задействуют особенно часто, их стоит рассмотреть более детально.

Синхронные модели

Многие виды компьютерного оборудования оснащаются именно этими двигателями. Преимущества их использования очевидны:

  • постоянство частоты вращения;
  • невысокая чувствительность к перепадам напряжения;
  • возможность применения в качестве генератора мощности.

Разумеется, есть и некоторые минусы в виде трудностей с запуском, сложности конструкции и регулировки частоты вращения.

Асинхронные агрегаты

Здесь частота вращения ротора отличается от показателей крутящего поля. По конструктивным особенностям различают устройства с фазным и короткозамкнутым ротором. Больше отличий в конструкции практически нет. Они затрагивают разве что количество обмоток, согласно чему устройства разделяют на одно-, двух- и трёхфазные.

Сегодня асинхронные агрегаты входят в комплектацию огромного количества электрических машин. Благодаря многообразию физических и технических характеристик устройства можно выбрать оптимальное (в зависимости от условий эксплуатации).

К примеру, трёхфазный электродвигатель 1,1 кВт 3 000 об/мин подойдёт для оснащения бетономешалок, компрессоров, насосов и т. д. Однофазный агрегат применим в маломощных устройствах, в числе которых небольшие комнатные вентиляторы.

Среди преимуществ асинхронных электродвигателей стоит выделить:

  • простоту изготовления;
  • повышенную надёжность;
  • малые эксплуатационные расходы.

Однако подобные приборы зависят от напряжения сети, имеют небольшой пусковой момент и вызывают сложности в точной регулировке скорости. Это важно учитывать при покупке.

Незаменимое изобретение

Электрические двигатели применяются буквально везде. Без них невозможно представить работу большинства машин. Их использование помогает снизить трудозатраты человека и сделать повседневную жизнь максимально комфортной.

Преимуществ перед ДВС у электродвигателя много:

  • 1. Малый вес и достаточно компактные размеры. К примеру инженеры Yasa Motors разработали мотор весом 25 кг, который может выдавать до 650 Нм.
  • 2. Долговечность, простая эксплуатация.
  • 3. Экологичность.
  • 4. Максимальный крутящий момент доступен уже с 0 об/мин.
  • 5. Высокий КПД.
  • 6. Нет необходимости в коробки передач. Хотя, по мнению специалистов, электромобилю она не помешает.
  • 7. Возможность рекуперации.

Существенных недостатков у самого электродвигателя нет. Но есть большие сложности в его питании. Несовершенство источников тока не дают пока что массово использовать электродвигатели в автомобилестроении.

Подбор электродвигателя

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.

Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.

Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.