Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Какой тип связи в металлах. Металлическая связь: механизм образования и примеры. Ионная химическая связь

Какой тип связи в металлах. Металлическая связь: механизм образования и примеры. Ионная химическая связь

В гости к осени

По результатам экскурсии заполните таблицу.

Обозначь цифрами порядок следования осенних месяцев.

К осенним явлениям в неживой природе относятся: похолодание, листопад , первые заморозки, ледостав.


Найдите ошибку в утверждении. Зачеркните лишнее слово.

К осенним явлениям в живой природе относятся: увядание трав, появление инея , исчезновение насекомых, отлёт перелётных птиц.


В атласе - определителе "От земли до неба" найди информацию о ласточках и стрижах. Узнай, чем они похожи и чем различаются. Запиши.

Сравнение ласточек и стрижей

Сходство ласточек и стрижей:

  • Внешнее сходство. Похожи по размеру и строению (по форме головы, крыльев, тела)
  • У ласточек и стрижей раздвоен хвост
  • Насекомоядные. Эти птицы помогают уничтожать вредных насекомых
  • Пищу добывают в полёте, на лету ловят насекомых.
  • И ласточки, и стрижи много проводят времени в полёте.
  • Это перелётные птицы

Различия ласточек и стрижей:

  • У стрижа оперение всё черное, у ласточек также черный окрас, но грудка и живот светло-серые.
  • Крылья у стрижа более узкие и длинные, чем у ласточек, в полете они изогнуты, как серпы.
  • Стриж имеет очень острый клюв, которым он "стрижет" рассекает небо, чего нет у ласточки.
  • Стрижы летают быстрее ласточек.
  • В отличие от ласточек, стрижи не могут ходить по земле и взлетать с неё. Ноги у них совсем маленькие и слабые. Взлетают только с построек и деревьев.
  • Относятся к разным семействам: ласточки относятся к семейству - воробьинообразных, а стрижи - к семейству стрижиных.

Полюбуйся осенней природой и по своим наблюдениям выполни рисунок "Красота осени"

Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

Классификация материалов

В настоящее время все современные материалы принято соответствующим образом классифицировать.

Наибольшее значение в технике имеют классификации по функциональным и структурным признакам материалов.

Главным критерием классификации материалов по структурным признакам является агрегатное состояние, в зависимости от которого их подразделяют на следующие типы: твердые материалы, жидкости, газы, плазма.

Твердые материалы в свою очередь делят на кристаллические и некристаллические.

Кристаллические материалы можно разделить по типу связи между частицами: атомные (ковалентные), ионные, металлические, молекулярные (Рис.2.1.).

Типы связей между атомами (молекулами) в кристаллах

Атом состоит из положительно заряженного ядра и движущихся вокруг него электронов (отрицательно заряженных). Атом в стационарном состоянии электрически нейтрален. Различают внешние (валентные) электроны, связь которых с ядром незначительна и внутренние – прочно связанные с ядром.

Формирование кристаллической решетки происходит следующим образом. При переходе из жидкого в кристаллическое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают.

Связь между атомами осуществляется электростатическими силами, т.е. по природе связь едина – имеет электрическую природу, но проявляется по-разному в разных кристаллах. Различают следующие типы связей: ионную, ковалентную, полярную, металлическую.

Ковалентный вид связи

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.

Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H 2 , O 2 , N 2 , Cl 2 и др.

Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H 2 O, NF 3 , CO 2 .

Ковалентная связь образуется между атомами элементов, обладающих электроотрицательным характером.

При этом типе связи осуществляется обобществление свободных валентных электронов соседних атомов. Стремясь приобрести устойчивую валентную оболочку, состоящую из 8 электронов, атомы объединяются в молекулы, образуя одну или несколько пар электронов, которые становятся общими для соединяющихся атомов, т.е. одновременно входят в состав электронных оболочек двух атомов.

Материалы с ковалентной связью очень хрупки, но имеют высокую твердость (алмаз). Это, как правило, диэлектрики или полупроводники (германий, кремни) т.к. электрические заряды связаны между собой, а свободные электроны отсутствуют.

Ковалентной связью соединены атомы в молекулах простых газов (Н 2 , Cl 2 и др.)

Единственным известным человеку веществом с примером ковалентной связи между металлом и углеродом является цианокобаламин, известный как витамин B12.

Кристаллы с ионной связью (NaCl)

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Образование таких кристаллов образуется переходом электронов атомов одного типа к атомам другого от Na к Cl. Атом, потерявший электрон, становится положительно заряженным ионом, присоединивший электрон – отрицательным ионом. Сближение ионов разных знаков происходит до тех пор пока силы отталкивания ядра и электронных оболочек не уравновесят силы притяжения. Ионную связь имеют большинство минеральных диэлектриков и некоторые органические материалы.(NaCl, CsCl, CaF2.)

Твердые тела с ионной связью в большинстве случаев механически прочны, температуростойчивы, но часто хрупки. Материалы с этим типом связи в качестве конструкционных не применяются

Металлический тип связи

В металлах связь между отдельными атомами образуется за счет взаимодействия положительно заряженных ядер и коллективизированных электронов, которые свободно движутся в межатомных пространствах. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Такая связь называется металлической.

Наличие свободных электронов приводит к высокой электропроводности и теплопроводности металла, а также является причиной блеска металлов. Ковкость металлов объясняется перемещением и скольжением отдельных слоев атомов.

Практически в любом материале имеет место не один, а несколько типов связей. Свойства же материалов определяются преобладающими видами химических связей атомов и молекул вещества материала.

Из атомно-кристаллических материалов, в структуре которых преобладают ковалентные связи , наибольшее значение в технике имеют полиморфные модификации углерода и полупроводниковые материалы на основе элементов IV группы периодической системы элементов. Типичными представителями первых являются алмаз и графит - наиболее распространенная в земной коре и устойчивая модификация углерода со слоистой структурой. Полупроводниковые кристаллические германий и кремний являются основными материалами полупроводниковой электроники.

Большой интерес представляют некоторые соединения с ковалентной связью, такие как Fe 3 C, SiO, AlN - эти соединения играют большую роль в технических сплавах.

В обширную совокупность ионно-кристаллических материалов, имеющих кристаллическую структуру с ионным типом связей, входят оксиды металлов (соединения металлов с кислородом), которые являются составляющими важнейших руд, технологических присадок при плавке металлов, а также химические соединения металлов и неметаллов (бором, углеродом, азотом), которые используются как компоненты сплавов.

Металлический тип связи характерен для более чем 80 элементов таблицы Менделеева.

К кристаллическим твердым телам можно отнести и материалы со структурой молекулярных кристаллов , которая характерна для многих полимерных материалов, молекулы которых состоят из большого числа повторяющихся звеньев. Это биополимеры - высокомолекулярные природные соединения и их производные (в том числе древесина); синтетические полимеры, получаемые из простых органических соединений, молекулы которых имеют неорганические главные цепи и не содержат органических боковых групп. К числу неорганических полимеров относят силикаты и вяжущие. Природные силикаты - класс важнейших породообразующих минералов, составляющих около 80% массы земной коры. К неорганическим вяжущим материалам относятся цемент, гипс, известь и др. Молекулярные кристаллы инертных газов - элементов VIII группы периодической системы - испаряются при низких температурах, не переходя в жидкое состояние. Они находят применение в криоэлектронике, занимающейся созданием электронных приборов на основе явлений, которые имеют место в твердых телах при криогенных температурах.

Рис. 1.2. Расположение атомов в кристаллическом (а) и аморфном (б) веществе

Второй класс материалов составляют некристаллические твердые материалы . Ихразделяют по признаку упорядоченности и стабильности структуры на аморфные, стеклообразные и нестеклообразныые в полуразупорядоченном состоянии.

Типичными представителями аморфных материалов являются аморфные полупроводники, аморфные металлы и сплавы.

В группу стеклообразных материалов входят: ряд органических полимеров (полиметилакрилат при температурах ниже 105 °С, поливинилхлорид -ниже 82 °С и другие); многие неорганические материалы - неорганическое стекло на основе оксидов кремния, бора, алюминия, фосфора и т. д.; многие материалы для каменного литья - базальты и диабазы со стеклообразной структурой, металлургические шлаки, природные карбонаты с островной и цепочечной структурой (доломит, мергель, мрамор и др).

В нестеклообразном полуразупорядоченном состоянии находятся студни (структурированные системы полимер - растворитель, образующиеся при затвердевании растворов полимеров или набухании твердых полимеров), многие синтетические полимеры в высокоэластическом состоянии, каучуки и резины, большинство материалов на основе биополимеров, в том числе текстильные и кожевенные материалы, а также органические вяжущие материалы - битумы, дегти, пеки и др.

По функциональному назначению технические материалы делят на следующие группы.

Конструкционные материалы - твердые материалы, предназначенные для изготовления изделий, подвергаемых механическому воздействию. Они должны обладать комплексом механических свойств, обеспечивающих требуемые работоспособность и ресурс изделий при воздействии рабочей среды, температуры и других факторов.

Рис. 1.1. Классификация твердых кристаллических материалов по структурному признаку

Одновременно к ним предъявляют технологические требования, определяющие наименьшую трудоемкость изготовления деталей и конструкций, и экономические, касающиеся стоимости и доступности материала, что очень важно в условиях массового производства. К конструкционным материалам можно отнести металлы, силикаты и керамику, полимеры, резину, древесину, многие композиционные материалы.

Электротехнические материалы характеризуются особыми электрическими и магнитными свойствами и предназначены для изготовления изделий, применяемых для производства, передачи, преобразования и потребления электроэнергии. К ним относятся магнитные материалы, проводники, полупроводники, а также диэлектрики в твердой жидкой и газообразной фазах.

Триботехнические материалы предназначены для применения в узлах трения с целью регулирования параметров трения и изнашивания для обеспечения заданных работоспособности и ресурса этих узлов. Основными видами та­ких материалов являются смазочные, антифрикционные и фрикционные. К первым относят смазки в твердой (графит, тальк, дисульфид молибдена и др., жидкой (смазочные масла) и газообразной фазах (воздух, пары углеводородов и другие газы). В совокупность антифрикционных материалов входят сплавы цветных металлов (баббиты, бронзы и др.), серый чугун, пластмассы (текстолит, материалы на основе фторопластов и др.), металлокерамические композиционные материалы (бронзографит, железографит и др.), некоторые виды древесины и древесно-слоистых пластиков, резины, многие композиты. Фрикционные материалы имеют большой коэффициент трения и высокое сопротивление изнашиванию. К ним относятся некоторые виды пластмасс, чугунов, металлокерамики и других композиционных материалов.

Инструментальные материалы отличаются высокими показателями твердости, износоустойчивости и прочности, они предназначены для изготовления режущего, мерительного, слесарно-монтажного и другого инструмента. Сюда относятся такие материалы, как инструментальная сталь и твердые сплавы, алмаз и некоторые виды керамических материалов, многие композиционные материалы.

Рабочие тела - газообразные и жидкие материалы, с помощью которых энергию преобразуют в механическую работу, холод, теплоту. Рабочими телами служат водяной пар в паровых машинах и турбинах; аммиак, углекислота, фреон и другие хладагенты в холодильных машинах; масла в гидроприводе; воздух в пневматических двигателях; газообразные продукты сгорания органического топлива в газовых турбинах, двигателях внутреннего сгорания.

Топливо - горючие материалы, основной частью которых является углерод, применяемые с целью получения при их сжигании тепловой энергии. По происхождению топливо делят на природное (нефть, уголь, природный газ, горючие сланцы, торф, древесина) и искусственное (кокс, моторные топлива, генераторные газы и др.); по типу машин, в которых оно сжигается, - на ракетное, моторное, ядерное, турбинное и т. д.

Металлическая связь возникает между атомами металлов. Характерной особенностью атомов металлов является небольшое число электронов на внешнем энергетическом уровне, слабо удерживаемых ядром, и большое число свободных атомных орбиталей с близкой энергией, поэтому металлическая связь ненасыщенная.

Валентные электроны участвуют в образовании связей сразу с 8-ю или 12-ю атомами (в соответствии с координационным числом атомов металлов). В этих условиях валентные электроны с небольшой энергией ионизации перемещаются по доступным орбиталям всех соседних атомов, обеспечивая связь между ними.

Металлическая связь характеризуется слабым взаимодействием общих электронов с ядрами соединяемых атомов и полной делокализацией этих электронов между всеми атомами в кристалле, что обеспечивает устойчивость данной связи.

Схема образования металлической связи (М – металл):

М 0 – ne М n +

Металлы имеют особую кристаллическую решётку, в узлах которой находятся как нейтральные, так и положительно заряженные атомы металла, между которыми свободно перемещаются (в пределах кристалла) обобществлённые электроны ("электронный газ"). Движение общих электронов в металлах осуще­ствляется по множеству молекулярных орбиталей, возникших за счёт слияния большого числа свободных орбиталей соединяемых атомов и охватывающих множество атомных ядер. В случае металлической связи невозможно говорить о её направленности, так как общие электроны равномерно делокализованы по всему кристаллу.

Особенности строения металлов определяют их характерные физические свойства: твёрдость, ковкость, высокую электрическую проводимость и теплопроводность, а также особый металлический блеск.

Металлическая связь характерна для металлов не только в твёрдом состоянии, но и в жидком, то есть это свойство агрегатов атомов, расположенных в непосредственной близости друг другу. В газообразном состоянии атомы металлов связаны между собой одной или несколькими ковалентными связями в молекулы, например Li 2 (Li–Li), Be 2 (Be=Be), Al 4 – каждый атом алюминия соединён с тремя другими с образованием тетраэдрической структуры:

4. Водородная связь

Водородная связь – это особый вид связи, свойственный только атомам водорода. Она возникает в тех случаях, когда атом водорода связан с атомом наиболее электроотрицательных элементов, прежде всего фтора, кислорода и азота. Рассмотрим образование водородной связи на примере фтороводорода. У электроотрицательного атома водорода имеется только один электрон, благодаря которому он может образовывать ковалентную связь с атомом фтора. При этом возникает молекула фтороводорода Н-F, в которой общая электронная пара смещена к атому фтора.

В результате такого распределения электронной плотности молекула фтороводорода представляет собой диполь, положительным полюсом которого является атом водорода. Из-за того, что связывающая электронная пара смещается к атому фтора, частично освобождается 1 s -орбиталь атома водорода и частично обнажается его ядро. У любого другого атома положительный заряд ядра после удаления валентных электронов экранируется внутренними электронными оболочками, которые обеспечивают отталкивание электронных оболочек других атомов. У атома водорода таких оболочек нет, его ядро представляет собой весьма малую (субатомную) положительно заряженную частицу – протон (диаметр протона примерно в 10 5 раз меньше диаметров атомов, и, вследствие отсутствия у него электронов, он притягивается электронной оболочкой других электронейтральных или отрицательно заряженных атомов).

Напряжённость электрического поля вблизи частично «обнажённого» атома водорода настолько велика, что он может активно притягивать отрицательный полюс соседней молекулы. Поскольку этим полюсом является атом фтора, имеющий три несвязывающие электронные пары, а s - орбиталь атома водорода частично вакантна, то между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом фтора соседней молекулы возникает донорно-акцепторное ваимодействие.

Таким образом, в результате совместного электростатического и донорно-акцепторного взаимодействия возникает дополнительно вторая связь с участием атома водорода. Это и есть водородная связь, …Н–F Н–F…

Она отличается от ковалентной по энергии и длине. Водородная связь более длинная и менее прочная, чем ковалентная. Энергия водородной связи 8–40 кДж/моль, а ковалентной 80–400 кДж/моль. В твёрдом фтороводороде длина ковалентной связи Н–F равна 95 пм, длина водородной связи F Н равна 156 пм. Благодаря водородной связи между молекулами HF кристаллы твёрдого фтороводорода состоят из бесконечных пло­ских зигзагообразных цепей, так как образующаяся за счет водородной связи система из трех атомов, как правило, линейна.

Водородные связи между молекулами HF частично сохраняются в жидком и даже в газообразном фтороводороде.

Водородная связь условно записывается в виде трёх точек и изображается следующим образом:

где X, Y – атомы F, O, N, Cl, S.

Энергия и длина водородной связи определяются дипольным моментом связи H–X и размером атома Y. Длина водородной связи уменьшается, а её энергия возрастает с увеличением разности электроотрицательностей атомов X и Y (и соответственно дипольного момента связи H–X) и с уменьшением размера атома Y.

Водородные связи образуются также между молекулами, в которых имеются связи О–Н (например, вода H 2 O, хлорная кислота НClO 4 , азотная кислота HNO 3 , карбоновые кислоты RCOOH, фенол C 6 H 5 OH, спирты ROH) и N–Н (например, аммиак NH 3 , тиоциановая кислота HNCS, органические амиды RCONH 2 и амины RNH 2 и R 2 NH).

Вещества, молекулы которых соединены водородными связями, отличаются по своим свойствам от веществ, аналогичных им по строению молекул, но не образующих водородных связей. Температуры плавления и кипения гидридов элементов IVA-группы, в которых нет водородных связей, плавно понижаются с уменьшением номера периода (рис. 15).У гидридов элементов групп VA-VIIA наблюдается нарушение этой зависимости. Три вещества, молекулы которых соединены водородными связями (аммиак NH 3 , вода Н 2 О и фтороводород HF), имеют гораздо более высокие температуры плавления и кипения, чем их аналоги (рис. 15). Кроме того, эти вещества имеют более широкие температурные интервалы существования в жидком состоянии, более высокие теплоты плавления и испарения.

Важную роль водородная связь играет в процессах растворения и кристаллизации веществ, а также при образовании кристаллогидратов.

Водородная связь может образовываться не только между молеку­лами (межмолекулярная водородная связь, МВС) , как это имеет место в рассмотренных выше примерах, но и между атомами од­ной и той же молекулы (внутримолекулярная водородная связь, ВВС) . Например, благодаря внутримолекулярным водородным связям между атомами водорода аминогрупп и атомами кислорода карбонильных групп, полипептидные цепи, образующие молекулы белков, имеют спиралеобразную форму.

рисунок??????????????

Огромную роль водородные связи играют в процессах редуп­ликации и биосинтеза белков. Две нити двойной спирали ДНК (дезоксирибонуклеиновой кислоты) удерживаются вместе водородными связями. В процессе редупликации эти связи разрываются. При транскрипции синтез РНК (рибонуклеиновой кислоты) с использованием ДНК в качестве матрицы происходит также благодаря возникновению водородных связей. Оба процесса возможны потому, что водородные связи легко образуются и легко разрываются.

Рис. 15. Температуры плавления (а ) и кипения (б ) гидридов элементов групп IVА-VIIА.

Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.

Механизм металлической связи

Во всех узлах кристаллической решётки расположены положительные ионы металла . Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены.

Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. Если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объемно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объемно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объемно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома — в средней плоскости призмы. Такую упаковку атомов имеют металлы: Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой - металлической связью.


Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. Если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала: этот поток электронов, движущихся в одном направлении, и представляет собой всем знакомый электрический ток.