Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Классифицируйте следующие основания по кислотности koh. Гидроксиды. V. Закрепление изученного материала

Классифицируйте следующие основания по кислотности koh. Гидроксиды. V. Закрепление изученного материала

Гидроксиды щелочных металлов – при обычных усло­виях представляют собой твердые белые кристаллические вещества, гигроско­пичные, мылкие на ощупь, очень хорошо растворимы в воде (их растворение – экзотермический процесс), легкоплавки. Гидроксиды щелочноземельных металлов Са(ОН) 2 , Sr(OH) 2 , Ва(ОН) 2) – белые порошкообразные вещества, гораздо менее растворимы в воде по сравнению с гидроксидами щелочных металлов. Нерастворимые в воде основания обычно образу­ются в виде гелеобразных осадков, разлагающихся при хра­нении. Например, Сu(ОН) 2 – синий студенистый осадок.

3.1.4 Химические свойства оснований.

Свойства оснований обусловлены наличием ионов ОН – . В свойствах щелочей и нерастворимых в воде оснований имеются отличия, однако общим свойством является реак­ция взаимодействия с кислотами. Химические свойства оснований представ­лены в таблице 6.

Таблица 6 – Химические свойства оснований

Щелочи

Нерастворимые основания

Все основания реагируют с кислотами (реакция нейтрализации )

2NaOH + H 2 SО 4 = Na 2 SО 4 + 2H 2 О

Сr(ОН) 2 + 2НС1 = СrС1 2 + 2Н 2 O

Основания реагируют с кислотными оксидами с образованием соли и воды:

6КОН + Р 2 O 5 = 2К 3 РO 4 + 3Н 2 O

Щелочи реагируют с растворами солей , если один из продуктов реакции выпадает в осадок (т. е. если образу­ется нерастворимое соединение):

CuSO 4 + 2KOH = Cu(OH) 2 + K 2 SO 4

Na 2 SO 4 + Ba(OH) 2 = 2NaOH + BaSO 4 

Нерастворимые в воде основания и амфотерные гидроксиды разлагаются при на­гревании на соответствующий оксид и воду:

Мn(ОН) 2  МnО + Н 2 O

Сu(ОН) 2  СuО + Н 2 O

Щелочи можно обнаружить индикатором. В щелочной сре­де: лакмус – синий, фенолфталеин – малиновый, мети­ловый оранжевый – желтый

3.1.5 Важнейшие основания.

NaOH – едкий натр, каустическая сода. Легкоплавкие (t пл = 320 °С) белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. NaOH – один из важней­ших продуктов химической промышленности. В больших количествах требуется для очистки нефтепро­дуктов, широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также для производства искусственного волокна.

КОН – едкое кали. Белые гигроскопичные кристаллы, хорошо растворимы в воде. Раствор мылкий на ощупь и является опасной едкой жидкостью. СвойстваКОН аналогичны свойствам NaOH, но применяется гидроксид калия гораздо реже ввиду его более высокой стоимости.

Са(ОН) 2 – гашеная известь. Белые кристаллы, мало ра­створимы в воде. Раствор называется «известковой водой», суспензия – «известковым молоком». Известковая вода применяется для распознавания углекислого газа, она мут­неет при пропускании СO 2 . Гашеная известь широко используется в строительном деле в качестве основы для изготовления вяжущих веществ.

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Как металлы и неметаллы, кислоты и основания - это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу - это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H + . Основания Аррениуса в водном растворе образуют анионы OH - . Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, - это вещества, способные принять протон в реакции. Актуальная на данный момент теория - теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт - это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты - это распад HCl на H + и Cl - .

Свойства кислот и оснований

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты:
H 2 O, H 3 O + , CH 3 CO 2 H, H 2 SO 4 , HSO 4 − , HCl, CH 3 OH, NH 3
Часто используемые основания:
OH − , H 2 O, CH 3 CO 2 − , HSO 4 − , SO 4 2− , Cl −

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H + и анионы. Пример сильной кислоты - соляная кислота HCl:

HCl (р-р) + H 2 O (ж) → H 3 O + (р-р) + Cl - (р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO 3 , H 2 SO 4 , HClO 4

Список сильных кислот

  • HCl - соляная кислота
  • HBr - бромоводород
  • HI - йодоводород
  • HNO 3 - азотная кислота
  • HClO 4 - хлорная кислота
  • H 2 SO 4 - серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF (р-р) + H2O (ж) → H3O + (р-р) + F - (р-р) - в такой реакции более 90% кислоты не диссоциирует:
= < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H 3 PO 4 фосфорная
  • H 2 SO 3 сернистая
  • H 2 S сероводородная
  • H 2 CO 3 угольная
  • H 2 SiO 3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH (р-р) + H 2 O ↔ NH 4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH - :

NH 3 (р-р) + H 2 O ↔ NH + 4 (р-р) + OH - (р-р)

Большинство слабых оснований - это анионы:

F - (р-р) + H 2 O ↔ HF (р-р) + OH - (р-р)

Список слабых оснований

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример:
H 3 O + + OH - ↔ 2H 2 O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание (р-р) + H 2 O ↔ Слабая кислота (р-р) + OH - (р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX (р-р) + OH - (р-р) ↔ H 2 O + X - (р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

Диссоциация воды

Диссоциация - это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

H 2 O + H 2 O ↔ H 3 O + (р-р) + OH - (р-р)
K c = / 2
Константа равновесия воды при t=25°: K c = 1.83⋅10 -6 , также имеет место следующее равенство: = 10 -14 , что называется константой диссоциации воды. Для чистой воды = = 10 -7 , откуда -lg = 7.0.

Данная величина (-lg) называется pH - потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр - устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль - это ионное соединение образованное катионом отличным от H + и анионом отличным от O 2- . В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли , необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H + , ни OH - в воде. Например, Cl - , NO - 3 , SO 2- 4 , Li + , Na + , K + .

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F - , CH 3 COO - , CO 2- 3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора - количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

Основания – сложные вещества, состоящие из атома металла и одной или нескольких гидроксильных групп. Общая формула оснований Ме(ОН) n . Основания (с точки зрения теории электролитической диссоциации) – это электролиты, диссоциирующие при растворении в воде с образованием катионов металла и гидроксид-ионов ОН – .

Классификация. По растворимости в воде основания делят на щелочи (растворимые в воде основания) и нерастворимые в воде основания . Щелочи образуют щелочные и щелочно-земельные металлы, а также некоторые другие элементы-металлы. По кислотности (числу ионов О Н – , образующихся при полной диссоциации, или количеству ступеней диссоциации) основания подразделяют на однокислотные (при полной диссоциации получается один ион О Н – ; одна ступень диссоциации) и многокислотные (при полной диссоциации получается больше одного иона О Н – ; более одной ступени диссоциации). Среди многокислотных оснований различают двухкислотные (например, Sn(OH) 2 ), трехкислотные (Fe(OH) 3) и четырехкислотные (Th(OH) 4). Однокислотным является, например, основание КОН.

Выделяют группу гидроксидов, которые проявляют химическую двойственность. Они взаимодействую как с основаниями, так и с кислотами. Это амфотерные гидроксиды (см. таблицу 1) .

Таблица 1 - Амфотерные гидроксиды

Амфотерный гидроксид (основная и кислотная форма)

Кислотный остаток и его валентность

Комплексный ион

Zn(OH) 2 / H 2 ZnO 2

ZnO 2 (II)

2–

Al(OH) 3 / HAlO 2

AlO 2 (I)

– , 3–

Be(OH) 2 / H 2 BeO 2

BeO 2 (II)

2–

Sn(OH) 2 / H 2 SnO 2

SnO 2 (II)

2–

Pb(OH) 2 / H 2 PbO 2

PbO 2 (II)

2–

Fe(OH) 3 / HFeO 2

FeO 2 (I)

– , 3–

Cr(OH) 3 / HCrO 2

CrO 2 (I)

– , 3–

Физические свойства. Основания - твердые вещества различных цветов и различной растворимости в воде.

Химические свойства оснований

1) Диссоциация : КОН + n Н 2 О К + × m Н 2 О + ОН – × d Н 2 О или сокращенно: КОН К + + ОН – .

Многокислотные основания диссоциируют по нескольким ступеням (в основном диссоциация протекает по первой ступени). Например, двухкислотное основание Fe(OH) 2 диссоциирует по двум ступеням:

Fe(OH) 2 FeOH + + OH – (1 ступень);

FeOH + Fe 2+ + OH – (2 ступень).

2) Взаимодействие с индикаторами (щелочи окрашивают фиолетовый лакмус в синий цвет, метилоранж – в желтый, а фенолфталеин – в малиновый):

индикатор + ОН – (щелочь )окрашенное соединение.

3 ) Разложение с образованием оксида и воды (см. таблицу 2 ). Гидроксиды щелочных металлов устойчивы к нагреванию (плавятся без разложения). Гидроксиды щелочно-земельных и тяжелых металлов обычно легко разлагаются. Исключение составляет Ba(OH) 2 , у которого t разл достаточно высока (примерно 1000 ° C ).

Zn(OH) 2 ZnO + H 2 O .

Таблица 2 - Температуры разложения некоторых гидроксидов металлов

Гидроксид t разл , ° C Гидроксид t разл , ° C Гидроксид t разл , ° C
LiOH 925 Cd(OH) 2 130 Au(OH) 3 150
Be(OH) 2 130 Pb(OH) 2 145 Al (OH) 3 >300
Ca(OH) 2 580 Fe(OH) 2 150 Fe(OH) 3 500
Sr(OH) 2 535 Zn (OH) 2 125 Bi (OH) 3 100
Ba(OH) 2 1000 Ni (OH) 2 230 In (OH) 3 150

4 ) Взаимодействие щелочей с некоторыми металлами (например, Al и Zn ):

В растворе: 2Al + 2NaOH + 6H 2 O ® 2Na + 3H 2 ­

2Al + 2OH – + 6H 2 О ® 2 – + 3H 2 ­ .

При сплавлении: 2Al + 2NaOH + 2H 2 O 2NaAl О 2 + 3H 2 ­ .

5 ) Взаимодействие щелочей с неметаллами :

6 NaOH + 3Cl 2 5Na Cl + NaClO 3 + 3H 2 O .

6) Взаимодействие щелочей с кислотными и амфотерными оксидами :

2NaOH + СО 2 ® Na 2 CO 3 + H 2 O 2OH – + CO 2 ® CO 3 2– + H 2 O .

В растворе: 2NaOH + ZnO + H 2 O ® Na 2 2OH – + ZnO + H 2 О ® 2– .

При сплавлении с амфотерным оксидом: 2NaOH + ZnO Na 2 ZnO 2 + H 2 O .

7) Взаимодействие оснований с кислотами :

H 2 SO 4 + Ca(OH) 2 ® CaSO 4 ¯ + 2H 2 O 2H + + SO 4 2– + Ca 2+ +2OH – ® CaSO 4 ¯ + 2H 2 O

H 2 SO 4 + Zn(OH) 2 ® ZnSO 4 + 2H 2 O 2H + + Zn(OH) 2 ® Zn 2+ + 2H 2 O.

8) Взаимодействие щелочей с амфотерными гидроксидами (см. таблицу 1 ):

В растворе: 2NaOH + Zn(OH) 2 ® Na 2 2OH – + Zn(OH) 2 ® 2–

При сплавлении: 2NaOH + Zn(OH) 2 Na 2 ZnO 2 + 2H 2 O .

9 ) Взаимодействие щелочей с солями. В реакцию вступают соли, которым соответствует нерастворимое в воде основание :

CuS О 4 + 2NaOH ® Na 2 SO 4 + Cu(OH) 2 ¯ Cu 2+ + 2OH – ® Cu(OH) 2 ¯ .

Получение. Нерастворимые в воде основания получают путем взаимодействия соответствующей соли со щелочью:

2NaOH + ZnS О 4 ® Na 2 SO 4 + Zn(OH) 2 ¯ Zn 2+ + 2OH – ® Zn(OH) 2 ¯ .

Щелочи получают :

1) Взаимодействием оксида металла с водой :

Na 2 O + H 2 O ® 2NaOH CaO + H 2 O ® Ca(OH) 2 .

2) Взаимодействием щелочных и щелочно-земельных металлов с водой :

2Na + H 2 O ® 2NaOH + H 2 ­ Ca + 2H 2 O ® Ca(OH) 2 + H 2 ­ .

3) Электролизом растворов солей :

2NaCl + 2H 2 O H 2 ­ + 2NaOH + Cl 2 ­.

4 ) Обменным взаимодействием гидроксидов щелочно-земельных металлов с некоторыми солями . В ходе реакции должна обязательно получаться нерастворимая соль .

Ba(OH) 2 + Na 2 CO 3 ® 2NaOH + BaCO 3 ¯ Ba 2 + + CO 3 2 – ® BaCO 3 ¯ .

Л.А. Яковишин

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 259.

Наука служит лишь для того, чтобы дать нам понятие о размерах нашего невежества. Г.Ламене

Основания - сложные вещества, состоящие из ионов металлов и гидроксогрупп

Номенклатура ОСНОВАНИЙ

По международной номенклатуре названия оснований складываются из слова "гидроксид" и названия металла. Если металл проявляет переменную валентность, то в скобках указывается его валентность.
Например:

КОН- гидроксид калия,

Cu(OH) 2 - гидроксид меди (II)

Классификация оснований

По растворимости в воде все основания можно подразделить на растворимые в воде и нерастворимые:

Основания, растворимые в воде, называются щелочами

Основания различаются по кислотности. Они бывают одно- и многокислотные. Кислотность оснований определяется количеством гидроксильных групп, которые могут быть замещены на кислотные остатки.

Однокислотные основания образуют одновалентные металлы.

Многокислотные основания образуют многовалентные металлы.
Например:

Однокислотное основание,
- двухкислотное основание,
- трехкислотное основание и т.д.

Химические свойства оснований

Растворы щелочей, мыльные на ощупь меняют окраску индикаторов:

а) фиолетовый лакмус - в синий цвет,
б) бесцветный раствор фенолфталеина - в малиновый цвет.

В) желтый универсальный – в синий

Г) оранжевый метилоранж – в желтый

  1. Большинство трудно растворимых оснований при нагревании легко разлагаются на оксид и воду:


  1. Основания взаимодействуют с кислотами (реакция нейтрализации), образуя соль и воду:
  1. Щелочи взаимодействуют с кислотными оксидами: