Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Применение ниобия и его свойства. Свойства ниобия

Применение ниобия и его свойства. Свойства ниобия

В сфере добычи и производства сырья и металлов компания «МетПрод» работает уже более 20 лет, и за это время мы достигли высочайшего качества нашей продукции. Мы занимаемся добычей редких тугоплавких металлов, к числу которых относится и элемент ниобий – металл, свойства и область применения которого позволяют использовать его в самых ответственных отраслях. Качество продукции мы можем гарантировать, т.к. месторождения ниобия мы разрабатываем своими силами.

Ниобий и его особенности

Этот металл является очень устойчивым к химическим воздействиям различного рода – это и определяет его популярность в промышленности и дороговизну. Среди областей его применения самые ответственные – медицина, алмазная и ракетостроительная промышленность, производство монет. Кроме того, материал достаточно податлив при обработке, если вести ее при низких температурах. Ниобий обладает высокой температурой перехода – это свойство очень важно при производстве сверхпроводящих проводов и магнитов.

Поставляется он в слитках, порошке или лигатуре. Так, самый известный порошок марки Н6ПМ имеет в своем составе, кроме ниобия, углерод, азот, кислород, железо, титан, тантал и кремний и может иметь один из четырех классов зернистости (40–100 мкм).

Химическая устойчивость ниобия проявляется при взаимодействии с такими веществами, как азотная, ортофосфорная, серная и соляная кислота. Его можно растворить только в едкой щелочи очень высокой концентрации либо серной кислоте, тоже концентрированной и заранее нагретой до 150°C.

Для чего применяется ниобий

Металла с уникальными свойствам, очень нужны разным отраслям металлургии, т.к. он существенно оптимизирует характеристики сталей. Из сплавов с участием ниобия производят такие ответственные изделия, как:

  • трубы и емкости для газопроводов, нефтепроводов, для расплавленных металлов;
  • оболочки атомных и ядерных реакторов;
  • части электролитических конденсаторов;
  • различные огнеупорные материалы, специальные стекла и арматуру для ламп;
  • карбиды;
  • приспособления для химической промышленности, требующие высокой коррозионной стойкости;
  • «горячую» арматуру генераторных и электронных ламп для радаров – катоды, аноды, сетки и т.д.

В настоящее время потребность в ниобии увеличивается, и компания старается удовлетворить все запросы рынка: чтобы можно было купить ниобий по низкой цене, мы сами контролируем его добычу и изготовление на всех этапах. Мы предлагаем чистый металл, а также его сплавы, которые применяются в ракетостроении, для производства деталей авиационной и космической техники, в электронике и радиотехнике, атомной энергетике и в химическом аппаратостроении.

Примерно половина всего ниобия, имеющегося сейчас на рынке, используется для легирования сталей, а около 30% – для получения сплавов с нужными свойствами. Им легируют цветные металлы, в том числе уран, вводят в сталь для избежания межкристаллитной коррозии и улучшения ее свойств.

Ниобий был открыт в 1801 году английским химиком Ч. Гетчером и был им назван колумбием, по имени минерала, в котором он содержался. В чистом виде ниобий был выделен только в 1907 году, что было связано с большими трудностями его получения. Ниобий получил своё название в честь героини греческой мифологии Ниобеи, дочери Тантала, сына Зевса, которая была олицетворением сомнений и страданий.

Руды ниобия распространены в земной коре в разных минералах, этот элемент содержится в рудах в виде минералов колумбита, пирохрола, лопарита, ловчорита. Все эти минералы разделяют посредством методов обогащения и превращают в ниобиевый концентрат.

Ниобий считается редким элементом, его содержание в земной коре составляет 3,2.10-5%, в природе он встречается почти всегда вместе с танталом в виде смеси пятиокиси Nb2O5 и Ta2O5, причём в ней в 8-10 раз меньше, чем ниобия.

В природе известно около 120 минералов содержащих ниобий, но только некоторые из них годятся для промышленной переработки— в основном ниобий добывается из колумбита(до 77% пентоксида ниобия, есть тантал), лопарита (11% пентоксида ниобия), пирохрола (до 65% пентоксида ниобия).

Ниобий металл белого цвета, с сильным блеском. Чистый ниобий пластичен: куётся, протягивается. Ниобий сваривается при температуре красного каления, превосходя по этим свойствам тантал.

На воздухе ниобий весьма устойчив против окисления, при нагревании покрывается тонкой плёнкой окиси, изменяющей свой цвет по мере повышения температуры нагрева от жёлтого, затем голубого, до коричневато-голубого. Порошок металлического ниобия, нагретый до 400ОС, энергично окисляется на воздухе, разлагает воду с выделением водорода. С азотом, при нагреве до 1000ОС, образует нитрид. Способен поглощать водород, образуя гидрид, который очень хрупок. С хлором энергично реагирует при температуре 200ОС и выше. С бромом и йодом соединяется только при более высокой температуре. С серой соединяется при нагревании, образуя сульфиды NbS и Nb2S3.

Металлический компактный ниобий не растворим в соляной, азотной, серной кислотах и в царской водке, медленно растворяется в плавиковой кислоте, растворение ускоряется при контакте с платиной.

Растворы щелочей не действуют на ниобий, но расплавленные щёлочи и углещелочные соли образуют ниобаты. При высокой температуре ниобий отнимает кислород от CO2, SO2, P2O5, As2O5, Cr2O3.

ПОЛУЧЕНИЕ.

Ниобий — металл — Nb

Основным способом обогащения руд, содержащих колумбит и танталит, служит гравитационное обогащение (мокрая отсадка, обогащение на столах). В результате получают концентрат, содержащий кроме танталита и колумбита, касситерит, вольфрамит и некоторые другие минералы. Дальнейшее обогащение ведётся с помощью флотации и электромагнитного разделения. Переработка танталово-ниобиевых концентратов состоит из двух стадий: получение окислов тантала и ниобия, после чего следует разделение тантала и ниобия, и затем выделение чистых соединений-исходных продуктов для производства металлов.

Существует несколько способов обработки ниобиевых концентратов, в том числе:

    тонкоизмельчённый концентрат сплавляют с NaOH,в железном тигле при нагревании до температуры 800-1000ОС.После сплавления расплав выливают на противни, охлаждают, дробят и затем выщелачивают водой. При этом удаляется небольшая часть примесей кремния, олова, вольфрама, алюминия, серы, фосфора в виде растворимых натриевых солей. Затем осадок, содержащий ниобат или танталат натрия и щелочные соединения примесей, обрабатывают слабой, затем крепкой соляной кислотой удаляют примеси, остающийся осадок Nb2O5 растворяют в HF и добавкой KF переводят в двойную соль K2NbOF5, хорошо растворимую в воде (в отличие от соли тантала K2TaF7, отделяемой таким образом от ниобия).

  • концентрат обрабатывают смесью серной и щавелевой кислот при нагревании, ниобий переходит в раствор, из которого может быть выделен в виде пятиокиси.

Металлический ниобий получают различными способами:

  1. восстановлением хлорида ниобия при нагреве;

  2. металлотермическим восстановлением пятиокиси ниобия алюминием;

  3. способами применяемыми для восстановления тантала, с учётом несколько повышенной летучести ниобия при высокой температуре, по сравнению с танталом.

В результате длительного и сложного технологического процесса ниобий получают в виде порошка. Переработка порошков в компактные слитки, пригодные для различных целей, осуществляется главным образом спеканием порошков или плавкой в высоком вакууме.

ПРИМЕНЕНИЕ.

Применение ниобия в виде феррониобия и технически чистого металла в качестве легирующего элемента при производстве нержавеющих сталей, высоколегированных сплавов цветных металлов, твёрдых сплавов и магнитных материалов всё время возрастает.

Основная доля ниобия применяется в виде лигатурного сплава — феррониобия, в котором содержание ниобия составляет 35-57%; содержание углерода в этих лигатурах строго нормируется из расчета не превышения нормы 0,2%Св легируемой стали.

Ниобиевые сплавы находят всё большее применение в производстве космических летательных аппаратов. Из ниобиевых сплавов изготавливают трубы атомных реакторов, особенно теплообменников, заполненных жидкими щелочными металлами, а также детали турбореактивных двигателей, работающих при температурах до 1500ОС.

Пластинчатый ниобий нашёл применение в электронной промышленности (в рентгеновских трубках, высоковольтных выпрямителях).

Из ниобия и ниобиевых сплавов изготавливают нагреватели для работы в вакууме или в нейтральной атмосфере при температурах 1400 — 2000ОС.

Стали содержащие от 1 до5% ниобия, отличаются исключительной жаростойкостью и применяются для устройств котлов высокого давления. Добавка ниобия к специальным сортам стали резко повышает устойчивость сварных швов из этих сталей.

Чистый ниобий хорошо поглощает водород, при обычной температуре 1 грамм ниобия поглощает 100см3 газа, что в перспективе может быть использовано для создания двигателей на водородном горючем.

В др.-греч. мифологии * а. niobium; н. Niob, Niobium; ф. niobium; и. niobio), — химический элемент V группы периодической системы Менделеева , атомный номер 41, атомная масса 92,9064. Имеет один природный изотоп 93 Nb.

Оксид ниобия выделен впервые английским химиком Ч. Хатчетом в 1801 из колумбита . Металлический ниобий получил в 1866 шведский учёный К. В. Бломстранд.

Ниобий свойства

Ниобий- металл стального цвета, имеет объёмно-центрированную кубического решётку с а=0,3294 нм; плотность 8570 кг/м 3 ; t плавления2500°С, t кипения4927°С; теплоёмкость (298 К) 24,6 Дж/(моль.К); теплопроводность (273 К) 51,4 Вт/(м.К); температурный коэффициент линейного расширения (63-1103 К) 7,9.10 -6 К -1 ; удельное электрическое сопротивление (293 К) 16.10 -8 Ом.м; термический коэффициент электрического сопротивления (273 К) 3,95.10 -3 К -1 . Температура перехода в сверхпроводящее состояние 9,46 К.

Степень окисления +5, реже от +1 до +4. По химическим свойствам близок к танталу, чрезвычайно устойчив к холоду и при небольшом нагревании к действию многих агрессивных сред, в т.ч. и кислот. Ниобий растворяет только плавиковая кислота, её смесь с азотной кислотой и щёлочи. Амфотерен. При взаимодействии с галогенами образует галогениды ниобия. При сплавлении Nb 2 О 5 с содой получают соли ниобиевых кислот — ниобаты, хотя сами кислоты не существуют в свободном состоянии. Ниобий может образовывать двойные соли и комплексные соединения. Нетоксичен.

Получение и применение

Для получения ниобия ниобиевый концентрат сплавляют с едким натром или содой и образующийся сплав выщелачивают. Содержащиеся в нерастворившемся осадке Nb и Ta разделяют, оксид ниобия восстанавливают отдельно от оксида тантала. Компактный ниобий получают методами порошковой металлургии, электродуговой, вакуумной и электроннолучевой плавки.

Ниобий — один из основных компонентов при легировании жаропрочных сталей и сплавов. Ниобий и его сплавы используются как конструкционные материалы для деталей реактивных двигателей, ракет, газовых турбин, химической аппаратуры, электронных приборов, электрических конденсаторов, сверхпроводящих устройств. Ниобаты широко применяют как сегнетоэлектрики, пьезоэлектрики, лазерные материалы.

Физические свойства ниобия

Ниобий -- блестящий серебристо-серый металл.

Элементарный ниобий - чрезвычайно тугоплавкий (2468°C) и высококипящий (4927°C) металл, очень стойкий во многих агрессивных средах. Все кислоты, за исключением плавиковой, не действуют на него. Кислоты-окислители «пассивируют» ниобий, покрывая его защитной окисной пленкой (№205). Но при высоких температурах химическая активность ниобия повышается. Если при 150...200°C окисляется лишь небольшой поверхностный слой металла, то при 900...1200°C толщина окисной пленки значительно увеличивается.

Кристаллическая решетка Ниобия объемно центрированная кубическая с параметром а = 3,294A.

Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига.

Можно отметить такие свойства ниобия как высокая температура плавления и кипения, более низкая работа выхода электронов по сравнению с другими тугоплавкими металлами -- вольфрамом и молибденом. Последнее свойство характеризует способность к электронной эмиссии (испусканию электронов), что используется для применения ниобия в электровакуумной технике. Ниобий также имеет высокую температуру перехода в состояние сверхпроводимости.

Плотность 8,57 г/см3 (20 °С); tпл 2500 °С; tкип 4927 °С; давление пара (в мм рт. ст.; 1 мм рт. ст.= 133,3 н/м2) 1·10-5 (2194 °С), 1·10-4 (2355 °С), 6·10-4 (при tпл), 1·10-3 (2539 °С).

При обычной температуре ниобий устойчив на воздухе. Начало окисления (плёнки побежалости) наблюдается при нагревании металла до 200 -- 300°С. Выше 500° происходит быстрое окисление с образованием окисла Nb2O5.

Теплопроводность в вт/(м·К) при 0°С и 600 °С соответственно 51,4 и 56,2, то же в кал/(см·сек·°С) 0,125 и 0,156. Удельное объемное электрическое сопротивление при 0°С 15,22·10-8 ом·м (15,22·10-6 ом·см). Температура перехода в сверхпроводящее состояние 9,25 К. Ниобий парамагнитен. Работа выхода электронов 4,01 эв.

Чистый Ниобий легко обрабатывается давлением на холоду и сохраняет удовлетворительные механические свойства при высоких температурах. Его предел прочности при 20 и 800 °С соответственно равен 342 и 312 Мн/м2, то же в кгс/мм234,2 и 31,2; относительное удлинение при 20 и 800 °С соответственно 19,2 и 20,7%. Твердость чистого Ниобиы по Бринеллю 450, технического 750-1800 Mн/м2. Примеси некоторых элементов, особенно водорода, азота, углерода и кислорода, сильно ухудшают пластичность и повышают твердость Ниобия.

Химические свойства ниобия

Ниобий особенно ценится за его устойчивость к действию неорганических и органических веществ.

Есть разница в химическом поведении порошкообразного и кускового металла. Последний более устойчив. Металлы на него не действуют, даже если нагреть их до высоких температур. Жидкие щелочные металлы и их сплавы, висмут, свинец, ртуть, олово могут находиться в контакте с ниобием долго, не меняя его свойств. С ним ничего не могут поделать даже такие сильные окислители, как хлорная кислота, «царская водка», не говоря уж об азотной, серной, соляной и всех прочих. Растворы щелочей на ниобий тоже не действуют.

Существует, однако, три реагента, которые могут переводить металлический ниобий в химические соединения. Одним из них является расплав гидроксида какого-либо щелочного металла:

4Nb+4NaOH+5О2 = 4NaNbO3+2H2О

Двумя другими являются плавиковая кислота (HF) или ее смесь с азотной (HF+HNO). При этом образуются фторидные комплексы, состав которых в значительной степени зависит от условий проведения реакции. Элемент в любом случае входит в состав аниона типа 2- или 2-.

Если же взять порошкообразный ниобий, то он несколько более активен. Например, в расплавленном нитрате натрия он даже воспламеняется, превращаясь в оксид. Компактный ниобий начинает окисляться при нагревании выше 200°С, а порошок покрывается окисной пленкой уже при 150°С. При этом проявляется одно из чудесных свойств этого металла -- он сохраняет пластичность.

В виде опилок при нагревании выше 900°С он полностью сгорает до Nb2O5. Энергично сгорает в токе хлора:

2Nb + 5Cl2 = 2NbCl5

При нагревании реагирует с серой. С большинством металлов он сплавляется с трудом. Исключение, пожалуй, составляют лишь два: железо, с которым образуются твердые растворы разного отношения, да алюминий, имеющий с ниобием соединение Al2Nb.

Какие же качества ниобия помогают ему сопротивляться действию сильнейших кислот--окислителей? Оказывается, это относится не к свойствам металла, а к особенностям его оксидов. При соприкосновении с окислителями на поверхности металла возникает тончайший (поэтому он и незаметен), но очень плотный слой оксидов. Этот слой встает неодолимой преградой на пути окислителя к чистой металлической поверхности. Проникнуть сквозь него могут только некоторые химические реагенты, в частности анион фтора. Следовательно, по существу металл окисляется, но практически результатов окисления незаметно из-за присутствия тонкой защитной пленки. Пассивность по отношению к разбавленной серной кислоте используют для создания выпрямителя переменного тока. Устроен он просто: платиновая и ниобиевая пластинки погружены в 0,05 м. раствор серной кислоты. Ниобий в пассивированном состоянии может проводить ток, если является отрицательным электродом -- катодом, т. е. электроны могут проходить сквозь слой оксидов только со стороны металла. Из раствора путь электронам закрыт. Поэтому, когда через такой прибор пропускают переменный ток, то проходит только одна фаза, для которой платина -- анод, а ниобий -- катод.

ниобий металл галоген


Производство ниобия наряду с танталом, а также танталониобиевых сплавов имеет важное экономическое значение с точки зрения комплексного использования обоих ценных металлов.
Во многих случаях вместо тантала с тем же эффектом можно использовать близкий к нему по свойствам ниобий или сплавы тантала с ниобием, поскольку эти металлы образуют непрерывный ряд твердых растворов, свойства которых близки к свойствам исходных металлов.
Сплав тантала с ниобием можно получить путем смешения раздельно полученных порошков тантала и ниобия с последующим прессованием смеси и спеканием в вакууме, а также путем одновременного совместного восстановления смеси соединений тантала и ниобия, например смеси комплексных фторидов K2TaF7 и K2NbF7, смеси хлоридов, смеси окислов и т. п.
Обычно при плавиковокислом методе разделения тантала и ниобия последний отделяется в форме фтороксиниобата K2NbOF5*H2O.
Эта соль не пригодна для восстановления ее натрием по двум причинам:
а) кристаллизационная вода, входящая в состав указанной соли, реагируя с натрием, может привести к взрыву,
б) кислород, входящий в состав соли и связанный с ниобием, не восстанавливается натрием и остается в форме примеси окисла в продукте восстановления.
Поэтому фтороксиниобат калия должен быть перекристаллизован через раствор плавиковой кислоты с концентрацией HF выше 10%, в результате чего образуется соль K2NbF7, пригодная для восстановления натрием.
Ниобий также может быть получен электролизом в условиях, аналогичных описанным для производства тантала. Отмечаются более низкий выход по току, чем при электролитическом получении тантала, а также затруднения, связанные с заметной растворимостью в электролите соединений ниобия разных валентностей.
Возможен и электролиз из смешанной ванны, содержащей в качестве разлагающихся составляющих смесь Ta2O5+Nb2O5 и в качестве растворителя K2TaF7. В этом случае получается сплав ниобия с танталом.
Для получения ниобия был предложен метод углеродного восстановления пятиокиси ниобия в вакууме.

Восстановление пятиокиси ниобия углеродом


Для получения ниобия К. Болке разработал метод восстановления пятиокиси ниобия карбидом ниобия в вакууме по реакции:

По существу этот процесс сводится к восстановлению пятиокиси ниобия углеродом.
Ввиду большой химической прочности пятиокиси ниобия для восстановления углеродом при атмосферном давлении требуется высокая температура (около 1800-1900°), которая может быть получена в графитовотрубчатой печи Ниобий обладает большим сродством к углероду (свободная энергия образования карбида ниобия -ΔF° =38,2 ккал), поэтому при наличии углеродистых газов в печи и при большой скорости диффузии в твердой фазе, развивающейся при такой высокой температуре, ниобий оказывается загрязненным карбидом ниобия, даже в случае составления шихты в расчете на реакцию

В вакууме реакция восстановления углеродом протекает при более низкой температуре (1600-1700°),
Брикеты приготовляют из смеси пятиокиси ниобия и сажи, взятых в стехиометрических соотношениях по расчету на реакцию

Прокативание проводят при 1800-1900° в графитовотрубчатой печи в защитной атмосфере (водород, аргон) или в вакууме при температуре 1600° до прекращения выделения CO. Получающийся продукт представляет собой слегка спекшиеся брикеты, состоящие из частиц порошкообразного карбида серого цвета. Карбид измельчают в порошок в шаровой мельнице и смешивают с пятиокисью в соотношениях, соответствующих реакции (1). Брикеты смеси Nb2O5 + NbC вновь прокаливают в вакууме при температуре около 1600°.
Для обеспечения потного удаления углерода в виде CO в состав шихты Nb2O5 + NbC следует вводить небольшой избыток пятиокиси ниобия. В последующей операции высокотемпературного спекания (сварки) штабиков, спрессованных из порошкообразного металлического ниобия, избыток пятиокиси ниобия удаляется, так как.окислы ниобия (как и тантала) улетучиваются в вакууме при температуре ниже точки плавления металла
Вследствие неизбежных затрат времени на создание вакуума и остывания в нем продукта производительность вакуумной печи при изготовлении исходного карбида ниобия намного ниже производительности графитовотрубчатой печи, работающей при атмосферном давлении, в которой можно осуществлять непрерывный процесс продвижкой патронов с брикетами смеси Nb2O5 + С. Поэтому целесообразнее получать NbC непрерывным путем в графитовотрубчатой печи при атмосферном давлении хотя и при температурах 1800-1900°.
Можно было бы получать металлический ниобий в вакуумной печи непосредственно путем взаимодействия пятиокиси с сажей по реакции (2) с небольшим избытком Nb2O5 в шихте. Однако при загрузке в вакуумную печь смеси Nb2O5 + 5NbC ее производительность существенно повышается по сравнению с загрузкой смеси Nb2O5 + 5С, так как смесь Nb2O5 + SNbC содержит ниобия (82,4%) в 1,5 раза больше, чем смесь Nb2O5 + 5С (57,2%) Кроме того, первая смесь имеет аддитивный удельный вес в 1,7 раза больший, чем вторая смесь (6,25 г/см3 и 3,7 г/см3 соответственно).
Помимо этого, надо учитывать, что карбид ниобия, составляющий преобладающую часть смеси Nb2O5 + 5NbC, более крупнозернист чем дисперсные порошки Nb2O5 и сажи, что служит дополнительной причиной большего насыпного веса смеси Nb2O5 + 5NbC, чем смеси Nb2O5 + 5С.
Вследствие всего этого в единицу объема патрона может вместиться в 2,5-3 раза больше материала (в расчете на содержание ниобия) в форме брикетов смеси Nb2О5 + 5NbC, чем брикетов смеси Nb2O5 + 5С.
В работе Болке нет достаточно веских доказательств необходимости строго придерживаться рекомендуемого им состава Nb2O5 + 5NbC смеси, загружаемой в вакуумную печь.
Путем прокаливания смеси Nb2O5 + 5С в угольнотрубчатой печи при атмосферном давлении можно получить с большой производительностью (при непрерывном процессе) продукт, близкий по составу к металлическому ниобию с небольшой примесью углерода. Затем этот богатый ниобием порошок с высоким удельным и насыпным весом можно смешать с соответствующим количеством Nb2O5 (с небольшим избытком Nb2O5 по отношению к эквиваленту содержания примеси углерода в ниобии) и сбрикетированную смесь прокалить в вакуумной печи для удаления углерода в форме CO.
При таком варианте вместимость, а следовательно, и производительность вакуумной печи будет наибольшей. Небольшой остающийся избыток Nb2O5 улетучится в процессе дальнейшего высокотемпературного спекания ниобия, и последний превратится в компактный ковкий металл
При использовании малоуглеродистого ниобия вместо карбида ниобия для взаимодействия с пятиокисью могут возникнуть некоторые технологические осложнения. Дело в том, что при получении малоуглеродистого ниобия при атмосферном давлении в реакционном пространстве графитовотрубчатой печи всегда возможно присутствие примеси азота из воздуха могущего попасть в печь. Ниобий, обладая высоким сродством к азоту, активно поглощает его. При получении же карбида ниобия возможность загрязнения продукта азотом гораздо меньше вследствие большего сродства ниобия к углероду, чем к азоту.
Поэтому получение металлического ниобия при использовании в качестве исходного материала малоуглеродистого ниобия осложняется необходимостью создания условий, исключающих возможность попадания азота в реакционное пространство, что трудно достижимо в графитовотрубчатой печи, свободно соединенной с атмосферой. Для удаления азота из печи требуется тщательно заполнять печь чистым водородом или аргоном, соблюдать герметичность кожуха, избегать засасывания воздуха в реакционную трубу при загрузке в нее патронов со смесью Nb2O5 + 5С и при выгрузке ниобия и т. д.
Поэтому вопрос о преимуществах варианта предварительного получения карбида ниобия или малоуглеродистого ниобия при атмосферном давлении (с последующим прокаливанием этих продуктов в смеси с Nb2O5 в вакууме) может быть решен практическими возможностями в каждом отдельном случае.
Преимуществами процесса углеродного восстановления ниобия по одному из описанных вариантов являются: использование дешевого восстановителя в виде сажи и высокое прямое извлечение ниобия в готовый металл
Близость свойств окислов тантала и ниобия позволяет использовать описанный метод и для получения ковкого тантала.