Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Простой маломощный импульсный блок питания. Простой импульсный блок питания из энергосберегающей лампы. К недостаткам импульсной технологии следует отнести

Простой маломощный импульсный блок питания. Простой импульсный блок питания из энергосберегающей лампы. К недостаткам импульсной технологии следует отнести

!
В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.

В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.


Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.








Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.




Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.




Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.




Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.


Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала "Red Shade". Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.






Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.




Ток защиты регулируется с помощью вот этого подстроечного резистора:


Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.


Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.




Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.


Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.


Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.




Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;


сглаживающие конденсаторы;


а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.


Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).


Нельзя пропускать и частотозадающую часть схемы.


Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая - это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.




Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.


Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.

После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы - не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.








И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.




Далее видим конденсаторы фильтра.


Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.


Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.

Имеют меньшие размеры и больший КПД однако они гораздо сложнее в изготовлении и часто перегорают из за неправильного расчёта трансформатора или разводки платы (или чего либо ещё неправильного). Маломощный импульсный источник питания можно сделать своими руками если использовать одну из микросхем:
TNY263 на 7.5 Вт,
TNY264 на 9 Вт,
TNY265 на 11 Вт,
TNY266 на 15 Вт,
TNY267 на 19 Вт,
TNY268 на 23 Вт (мощности для источников в открытом исполнении);
использовать программу, свободно распространяемую программу, PI Expert которую можно скачать (для скачивания нужна регистрация) с официального сайта www.powerint.com фирмы Power Integrations и развести плату согласно рекомендациям в документации или программе PI Expert. Установочник данной программы занимает около 78МБ памяти. На момент написания данной статьи для скачивания надо перейти на Design Support-PI Expert TM Design Software-PI Expert Download - заполнить поля и нажать кнопку "Submit"(перед всем этим конечно надо зарегистрироваться и войти в свой аккаунт). Схему источника питания генерирует программа но можно использовать такую:

Рисунок 1 - Импульсный блок питания на 9В, 1А


Данный источник питания является импульсным понижающим обратноходовым преобразователем. В микросхему TNY266 встроен полевой транзистор который открывается с частотой 132кГц, когда этот транзистор открыт ток через первичную обмотку нарастает и в трансформаторе накапливается энергия, когда этот транзистор закрывается во вторичной обмотке возникает ЭДС, диод VD3 открывается и ток идёт в нагрузку. Диод VD3 должен быть мощным диодом Шоттки или обычным, с p-n переходом, но быстрым. Элементы C3, R2, VD2 нужны для того чтобы в случае отсутствия достаточной нагрузки защитить микросхему от высокого напряжения т.к. трансформатор всё равно выведет энергию наружу. Несмотря на наличие защиты данный блок питания без нагрузки лучше не включать или можно на выход поставить резистор с большим сопротивлением на всякий случай. Короткое замыкание или слишком большую нагрузку на выходе тоже лучше не делать т.к. от большого тока диод VD3 перегорит. Конденсатор C2 нужен для питания микросхемы в те моменты когда полевой транзистор этой микросхемы открыт, т.к. частота большая (132кГц) достаточно 0.1мкФ. На входе стоит резистор с сопротивлением 11Ом для ослабления бросков тока через диодный мост. Оптрон U2, стабилитрон VD4 и резисторы R3-R5 создают обратную связь для правильной работы микросхемы U1, сопротивления этих резисторов и напряжение стабилизации стабилитрона определяет программа PI Expert. Если требуется источник с другим напряжением на выходе и током то достаточно пересчитать только трансформатор и резисторы R3-R5, если ток на выходе больше 3А то VD3 подобрать с большим током, остальное можно оставить как есть. Начать лучше с трансформатора, для него нужно найти сердечник с зазором, можно например взять сердечник из трансформатора от телевизора:

Тип сердечника определяется по его длине например если длина 28мм то это сердечник EE28.
Есть также сердечники: EE16, EE19, EE20, EE22 и.т.д. от EE5 до ЕЕ320 (или может ещё какие либо есть). Трансформатор обязательно должен иметь зазор и подходить по мощности. Если программа выведет сообщение об ошибке то нужно сделать необходимые исправления. При первом запуске программы выбираете в меню файл-создать

Выбираете в поле "Линейка продуктов" TnySwitch нажимаете "Далее"

Нажимаете "Добавить..." выбираете напряжение и ток нажимаете "ОК"

Нажмите "Выбрать"

Перед вами появится схема, нажмите два раза на трансформатор, выберите сердечник и нажмите "ОК"

Перейдите по вкладке "конструкция трансформатора" и сделайте трансформатор как написано в инструкции

Мотать обмотки надо ровно виток к витку

Очень важно не ошибиться с фазировкой
Перейдите по вкладке "Схема"

Можете поставить такой стабилитрон и резистор как на схеме, можете выбрать другой стабилитрон (аналогично тому как сделано с трансформатором) в этом случае программа добавит последовательно стабилитрону резистор, также можно собрать блок питания по схеме в программе. Рекомендуемый пример разводки печатной платы появится если перейти по вкладке "Макет"

Лучше скачать программу на русском языке.
Плату можно сделать надфилем из фольгированного стеклотекстолита:

Главное делать аккуратно и не сломать надфиль.

Подробнее пример сборки и испытания блока можно увидеть на видео:
Дорожка от вывода 5 микросхемы TNY266 до трансформатора должна быть как можно короче.
Диодный мост DB107 на фотографии выше перевёрнут. TNY266PN можно недорого заказать по ссылке http://ali.pub/txdeu , трансформатор бесплатно вынут (потом перемотан) из платы от телевизора, остальные детали не очень дорогие и большую их часть тоже можно вынуть из телевизора или заказать недорого.
Блок питания готов! Напоследок напоминаю что такие (обратноходовые) источники нельзя перегружать и нельзя недогружать. Хотя в схеме имеются защиты но лучше ими не злоупотреблять.

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками.

Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства.

Области применения

Эти устройства имеют очень широкую сферу применения. Давайте рассмотрим основные способы использования. Для экономии ресурса аккумуляторных батарей к самодельным блокам питания подключают низковольтный электроинструмент. Такие приборы используются для подключения светодиодных осветительных приборов, установке освещения в помещениях с высокой влажностью и опасностью поражения электрическим током и для многих других целей, не имеющих прямого отношения к радиоэлектронике.


Классификация устройств

Большинство блоков питания преобразуют сетевое переменное напряжение величиной 220 вольт в постоянное напряжение заданной величины. При этом устройства характеризуется большим перечнем рабочих параметров, которые необходимо учитывать при покупке или конструировании.

Основными рабочими параметрами является выходной ток, напряжение и возможность стабилизации и регулировки выходного напряжения. Все эти преобразователи по способу преобразования классифицируются на две большие группы: аналоговые и импульсные приборы. Эти группы блоков питания имеют сильные отличия и легко различаются по фото с первого взгляда.

Ранее выпускались только аналоговые приборы. В них преобразование напряжения осуществляется с помощью трансформатора. Собрать такой источник не составляет труда. Его схема достаточна проста. Он состоит из понижающего трансформатора, диодного моста и стабилизирующего конденсатора.

Диоды преобразуют переменное напряжение в постоянное напряжение. Конденсатор дополнительно его сглаживает. Недостатком таких приборов являются большие габариты и масса.

Трансформатор мощностью 250 Ватт обладает массой несколько килограмм. Кроме того на выходе таких устройств напряжение может меняться от внешних факторов. Поэтому для стабилизации выходных параметров в таких аппаратах в электронную схему добавляются специальные элементы.

С использованием трансформаторов изготавливаются блоки питания повышенной мощности. Такие приборы целесообразно использовать для зарядки автомобильных аккумуляторов или для подключения электрических дрелей для экономии ресурса литиевых аккумуляторов.

Преимуществом такого устройства является гальваническая развязка между двумя обмотками (за исключением автотрансформаторов). Первичная обмотка, подключенная в сеть высокого напряжения, не имеет физического контакта с вторичной обмоткой. На ней генерируется пониженное напряжение.

Передача энергии осуществляется с помощью магнитного поля переменного тока в металлическом сердечнике трансформатора. При наличии минимальных знаний в радиоэлектронике своими руками легче собрать классический регулируемый блок питания с использованием трансформатора.


С развитием электронной техники стало возможным выпускать более дешевые полупроводниковые преобразователи напряжения. Они очень компактны, мало весят и обладают очень низкой ценой. Благодаря этому они стали лидерами рынка. В любой квартире используются несколько разных блоков питания.

К сожалению, в большинстве современных приборов отсутствует гальваническая развязка с питающей сетью. Из-за этого довольно часто гибнут люди, которые при зарядке сотового телефона или другой техники пользуются прибором и одновременно принимают ванну или умываются.

При соблюдении техники безопасности человеку ничего не грозит. Эти приборы обладают достаточно низкой стоимостью и при их поломке зачастую их не пытаются отремонтировать, а приобретают новое устройство. Тем не менее если разобраться со схемами и принципами работы импульсных блоков питания, то легко можно будет, как отремонтировать такой блок питания, так и собрать новый прибор.

Импульсные блоки питания

Давайте разберемся с устройством и принципом работы импульсных источников питания. В таких приборах на входе переменное сетевое напряжение преобразуется в высокочастотное напряжение. Для трансформации токов высокой частоты требуются не большие трансформаторы, а миниатюрные электромагнитные катушки. Поэтому такие преобразователи легко умещаются в маленьких корпусах. Например, они легко размещаются в пластиковом патроне энергосберегающей лампы.


Компоновка такого блока питания в приборе небольшого размера не вызывает никаких проблем. Для надежной работы необходимо предусмотреть возможность охлаждения на специальных металлических радиаторах нагревающихся элементов электронной схемы. Преобразованное напряжение выпрямляется с помощью быстродействующих диодов и сглаживается на выходном фильтре.

Недостатком таких приборов является неизбежное наличие высокочастотных помех на выходе преобразователя, несмотря даже на наличие специальных фильтров. Кроме того, в импульсных приборах используются специальные схемы стабилизации выходного напряжения.


Импульсный блок питания можно приобрести в виде отдельного блока, готового к монтажу в приборе. Также это устройство можно собрать самостоятельно, воспользовавшись широко распространенными схемами и инструкциями по сборке блоков питания.

При этом следует учесть, что самостоятельная сборка может обойтись дороже покупного изделия, приобретенного в интернете на азиатском рынке. Это может быть вызвано тем, что радиоэлектронные компоненты продаются с большей наценкой, чем наценка производителя в Китае на сборку изделия и его доставку. В любом случае, разобравшись с устройством таких приборов, можно будет не только собрать такой прибор самостоятельно, но и при необходимости отремонтировать. Такие навыки будут очень полезными.

При желании сэкономить, можно воспользоваться импульсными блоками питания от персональных компьютеров. Зачастую в вышедшем из строя персональном компьютере находится исправный блок. Они требуют минимальной доработки перед использованием.

Такие блоки питания имеют защиту от холостого хода. Они должны всё время находиться под нагрузкой. Поэтому для того, что бы избежать отключения в нагрузку включают постоянное сопротивление. Такие модернизированные блоки применяют в первую очередь для питания бытового электроинструмента.

Фото блоков питания своими руками

Для понижения и выпрямления напряжения сети до 12 В традиционным способом идет передача энергии последовательно. Понадобятся блоки, изображенные на структурной схеме.

Силовой трансформатор на входе снижает напряжение с 220 вольт до 15, с запасом, чтобы потом в дальнейших схемах оно, неизбежно при выпрямлении и сглаживании теряя величину, опустилось как раз до нужных 12 вольт. Выпрямитель делается в виде моста из низковольтных диодов, в результате работы которого получается знакопостоянное пульсирующее напряжение. Делается так, что два полупериода попеременно идут то через одну пару диодов, то через другую, и на выходе напряжение начинает «дергаться» только в одну строну. Схема сглаживания содержит накапливающий заряды инерционный элемент - конденсатор большой емкости. Он заряжается от импульса и медленно поддерживает напряжение своим неторопливым разрядом до поступления следующего импульса. Это называется сглаживание, но еще делается и дополнительная стабилизация выходного напряжения, чтобы на него меньше влияла величина нагрузки.

Плюс такой схемы в том, что трансформатор на входе сразу «отвязывает» все дальнейшие схемы от высокого входного напряжения. Только за это приходится платить физически большим силовым трансформатором. В нашем случае трансформатор, питающий более-менее подходящую мощность прибора, например, в 300 ватт (старый телевизор), должен весить около 4 кг. Ну, понятно, поставил его, такой блок питания, на пол, и стоит, каши не просит. Но как быть для небольших устройств? Неужели катить его с собой на тележке? Кроме того, большая масса железа, работающая на маленькую нагрузку, порождает низкий КПД - около 50%.

Ну и цена, пропорциональная массе прибора, заставляет придумывать нечто более миниатюрное во всех отношениях.

Импульсные источники питания

В импульсных блоках питания, прежде всего, избавились от громоздкого понижающего трансформатора. Напряжение сразу выпрямляется, и уже им запитывается генератор импульсов, напряжение которого и можно потом понизить до любого желаемого уровня. Причем, габариты понижающих трансформаторов при этом напрямую зависят от частоты, выдаваемой генератором, - чем выше частота, тем меньше трансформатор. И уж потом такое питание, снова его выпрямив, используют в устройстве.

Видно, что традиционный блок питания переместился на нижний этаж; кроме того, имеется обратная связь, дополнительно настраивающая инвертор (генератор импульсов)

Силовой трансформатор здесь импульсный, работает после генератора импульсов. Он высокочастотный, так как частота генератора порядка 20–100 кГц. В качестве материала сердечника используется не обычное трансформаторное железо, а ферримагнетки, материалы на основе структурированных окислов железа, которые лучше выполняют свою функцию на высоких частотах.

Обмотки такого трансформатора имеют полярность, это играет роль при подключении начала и конца обмоток.

Такие блоки питания вполне реально изготовить совершенно маленькими, что можно увидеть на блоках питания энергосберегающих ламп - они умещаются в цоколь лампы.

Кстати, и использовать блок питания (балласт) такой лампы можно по другому назначению. Вернее, по своему назначению, но в другом устройстве, когда лампа - сверхнадежная и экономичная - все-таки перегорит.

Выходной выпрямитель после трансформатора делается на основе диодов Шоттки, имеющих меньшую, чем у обычных диодов, внутреннюю емкость, следовательно, лучше работающих на высокой частоте.

Схема обратной связи калибрует импульсы генератора сигналом рассогласования, который заставляет вырабатывать импульсы тем большей длительности, чем больше отличается выходное напряжение от нужного номинала. Этим на выход передается большая мощность, и напряжение выравнивается.

Обратноходовый блок управления инвертором создает гальваническую привязку выходной цепи к цепи входного напряжения. Чтобы от этого избавиться, используют оптроны - приборы оптической передачи, преобразователи электросигнал–свет–электросигнал.

Пример простого импульсного блок питания

Сейчас современные электронные потребительские устройства все выпускаются с импульсными блоками питания. Поэтому и самому сделать его из частей от других импульсных источников питания (ИИП) легко, а уж взять готовый блок или зарядное и слегка переделать под свое напряжение - и того проще.

Импульсный БП, то есть инверторный блок питания, характеризуется только выходным напряжением и номинальной мощностью. Входы у них у всех обычные - 220 В. Для устройств связи, модемов, например, часто встречается импульсный блок питания на 24 В. Ноутбуки чаще всего берут 19 В. Все ИБП, имеющие выход типа USB, вырабатывают 5 В. Для всего остального прочего, например, светодиодных линеек, чаще всего требуется знакомое и любимое нами по автомобильным аккумуляторам напряжение в 12 В.

Импульсный источник питания можно взять готовый, перенастроив его под требуемое напряжение выхода,

А можно собрать и самому на плате, воспользовавшись простейшей схемой.

Элементы легко приобретаются в магазинах компонентов схемотехники.

Кроме сборки элементов на плате, пользуясь данным описанием, можно сделать и импульсный трансформатор своими руками.

Недостатки импульсных БП и пути их устранения

Так как прямоугольные импульсы «не фэн-шуйны» - имеют резкие взлеты и спады напряжения (передние и задние фронты импульсов), это порождает высокочастотные помехи, способные пройти сквозь схемы с малым емкостным сопротивлением. На силовую часть различных устройств они обычно не влияют, но в умных схемах могут оказаться ощутимой нежелательной помехой.

Часто для питания компьютеров используют сетевые фильтры, пилоты, которые содержат такую функцию - подавление высокочастотных помех. Но импульсные БП сами могут являться источником таких шумовых сигналов, поэтому в нем необходимо применять дополнительную фильтрацию таких помех на выходе.

Импульсные блоки питания критичны к номиналам нагрузки, питаемая ими мощность не должна отличаться слишком сильно ни в сторону превышения, ни в сторону занижения. Регулировка обратной связью делается для того, чтобы в цифровых устройствах, которые такой БП снабжает напряжением, во время работы обычные для них колебания мощности, происходящие от включения/выключения каких-то блоков, регистров, и т. д. не ухудшали нормальную работу. Эти колебания происходят вокруг некоторого среднего значения мощности и не должны систематически отклоняться туда или сюда.

В реальных БП делается специальная защита от работы в недонагруженном или перенагруженном состоянии.

Импульсный блок питания - это инверторная система, в которой переменное напряжение преобразовывается в постоянное, а затем из него формируются импульсы повышенной частоты. Такой прибор стоит довольно дорого и купить его могут только обеспеченные люди. Все те, кто не относится к этой категории, стараются изготовить устройство своими руками. Для этого понадобятся необходимые материалы и схема импульсного блока питания 12 В 5А.

Общие сведения

Перед тем как сделать импульсный блок питания своими руками, необходимо подробно изучить его конструктивные особенности, принцип действия, достоинства и недостатки. С помощью этой информации можно ускорить процесс создания, а также сделать устройство более качественным и долговечным.

Составные части

Чаще всего самодельный импульсный блок питания изготавливается по стандартной схеме с использованием некоторых важных элементов. Он применяется для корректировки входного напряжения при питании светодиодных ламп или других осветительных приборов. Конструкция блока включает в себя несколько составляющих:

Принцип работы

Импульсный источник питания отличается простотой своей работы. В ней без труда сможет разобраться не только специалист, но и новичок, имеющий элементарные знания в этой области. Из-за этого устройства считаются наиболее доступными и часто используются для достижения различных целей. Работают они следующим образом:

  1. Переменное входное напряжение преобразовывается в постоянное.
  2. Затем оно принимает вид прямоугольного импульса высокой частоты и подаётся на трансформатор.
  3. Там при помощи отрицательной обратной связи происходит процесс стабилизации напряжения.

Обратная связь может быть создана одним из двух способов. Оба они позволяют качественно выполнить возложенные функции и избежать появления непредвиденных ситуаций. Способы организации обратной связи:

  1. Без создания развязки (применяется резисторный делитель напряжения).
  2. С гальванической развязкой (выход обмотки трансформатора или оптрон).

Аналогично происходит процесс выдерживания выходного напряжения.

Преимущества и недостатки

Созданный своими руками импульсный БП, как и любое другое устройство, имеет несколько достоинств. Благодаря им конструкция пользуется большой популярностью и часто применяется в той или иной сфере деятельности человека. К положительным сторонам источника питания относятся следующие факторы:

Несмотря на большое количество преимуществ, у конструкции есть и несколько недостатков. Их обязательно нужно учитывать, так как они позволят избежать неисправностей и снизят риск некачественной работы устройства. Среди недостатков выделяются такие:

  1. Наличие трудностей при самостоятельной регулировке параметров прибора.
  2. Сильные импульсные помехи.
  3. Необходимость дополнения цепи компенсаторами коэффициента мощности.
  4. Сложность проведения ремонтных и профилактических работ.
  5. Низкая степень надёжности.

Изготовление своими руками

Для того чтобы устройство правильно работало и выполняло возложенные на него функции, необходимо соблюсти ряд правил. С их помощью можно добиться нужного результата и снизить вероятность возникновения ошибок.

Во время изготовления импульсного источника питания следует брать во внимание не только советы производителей деталей, но и рекомендации специалистов. Они помогут новичкам избежать большинства простых ошибок и выполнить работу за максимально короткий промежуток времени. Советы профессионалов:

  1. В большинстве случаев схема блока питания не требует наличия специальных фильтров и организации обратной связи.
  2. Из множества полевых транзисторов рекомендуется покупать детали типа IR. Они хорошо выдерживают повышенные температуры и не разрушаются под длительным воздействием тепла.
  3. Если в собранной своими руками конструкции транзисторы будут сильно нагреваться в процессе работы, то следует установить дополнительное охлаждающее устройство (вентилятор).

Необходимые материалы и инструменты

Перед тем как приступить к изготовлению устройства, нужно подготовить все необходимые материалы и инструменты. Благодаря этому можно будет не отвлекаться во время работы, чтобы найти тот или иной предмет. В процессе создания прибора понадобятся:

Помимо составляющих частей конструкции необходимо подготовить различные инструменты. С их помощью будет выполняться сборка устройства, поэтому они должны быть качественными и удобными для использования.

Необходимые инструменты:

  • плоскогубцы;
  • отвёртки разного размера;
  • пинцет;
  • паяльное оборудование;
  • расходные материалы для пайки.

Процесс сборки

После того как все подготовительные мероприятия были завершены, можно приступать к сборке устройства своими руками. Схема импульсных источников питания составляется заранее. Эту работу можно выполнять самостоятельно или с помощью специалиста.

Первый вариант значительно дешевле, но требует от мастера наличия знаний в области электроники и больших временных затрат.

Пошаговая инструкция:

Тестирование устройства

Для того чтобы проверить собранный импульсный источник энергии на работоспособность, необходимо выполнить несколько простых действий. Они помогут выявить различные проблемы и ошибки, допущенные в процессе сборки. Порядок действий:

  1. Выполняется первое кратковременное включение устройства в цепь.
  2. Если всё правильно сделано, то должна загореться лампочка, сигнализирующая о подаче питания к прибору.
  3. Затем следует оставить блок питания в рабочем состоянии на несколько минут.
  4. По истечении этого времени необходимо отключить устройство и проверить температуру всех его деталей. Нагрев одного или нескольких элементов будет свидетельствовать о допущенной ошибке в процессе сборки.
  5. При втором пуске определяется величина напряжения. Выполнить эту операцию можно при помощи специального тестера.
  6. Работающий блок питания оставляется примерно на 1 час.
  7. По прошествии указанного промежутка времени элементы проверяются на степень нагрева.
  8. Если ни один из элементов не стал горячим, то все они проверяются на наличие высокого тока после отключения питания.

Техника безопасности

Во время эксплуатации импульсного блока необходимо придерживаться простых правил безопасности. Они помогут избежать травм разной степени тяжести и снизить вероятность возникновения аварийной ситуации. Основные меры предосторожности:

Импульсный источник энергии - это полезное и нужное устройство, которое можно не только купить в готовом виде, но и изготовить своими руками. Второй вариант более популярный, так как он позволяет получить качественный прибор с минимальными финансовыми и временными затратами.

При соблюдении советов профессионалов и правил техники безопасности можно значительно снизить риск получения травмы и избежать аварийных ситуаций.