Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Связь между потенциалом и напряженностью электрического поля

Связь между потенциалом и напряженностью электрического поля

Каждой точке электрического поля соответствуют определённые значения потенциала и напряжённости. Найдём связь напряжённости электрического поля с разностью потенциалов.

Пусть заряд q перемещается в направлении вектора напряжённости однородного электрического поля Е из точки 1 в точку 2, находящуюся на расстоянии Δd от точки 1 (рис. 14.33). Электрическое поле совершает работу

Эту работу согласно формуле (14.19) можно выразить через разность потенциалов между точками 1 и 2:

А = g(φ 1 - φ 2) = -qΔφ = qU. (14.20)

Приравнивая выражения для работы, найдём модуль вектора напряжённости поля:

В этой формуле U - разность потенциалов между точками 1 и 2, лежащими на одной силовой линии поля (см. рис. 14.33).

Формула (14.21) показывает: чем меньше меняется потенциал на расстоянии Δd, тем меньше напряжённость электростатического поля. Если потенциал не меняется совсем, то напряжённость поля равна нулю.

Так как при перемещении положительного заряда в направлении вектора напряжённости электростатическое поле совершает положительную работу

А = q(φ 1 - φ 2) > 0,

то потенциал φ 1 больше потенциала φ 2 .

Любое электростатическое поле в достаточно малой области пространства можно считать однородным.

Формула (14.21) справедлива для произвольного электростатического поля, если только расстояние Δd настолько мало, что изменением напряжённости поля на этом расстоянии можно пренебречь.


Единица напряжённости электрического поля. Единицу напряжённости электрического поля в СИ устанавливают, используя формулу (14.21).

Единица напряжённости - вольт на метр (В/м).

Напряжённость, как мы уже знаем, можно также выражать в ньютонах на кулон. Действительно,

Эквипотенциальные поверхности. При перемещении заряда под углом 90° к силовым линиям электрическое поле не совершает работу, так как электростатическая сила перпендикулярна перемещению. Значит, если провести поверхность, перпендикулярную в каждой её точке силовым линиям, то при перемещении заряда вдоль этой поверхности работа не совершается. А это означает, что все точки поверхности, перпендикулярной силовым линиям, имеют один и тот же потенциал.

Эквипотенциальные поверхности однородного поля представляют собой плоскости (рис. 14.34, а), а поля точечного заряда - концентрические сферы (рис. 14.34, б).

Эквипотенциальные поверхности качественно характеризуют распределение поля в пространстве подобно тому, как линии уровня отражают рельеф поверхности на географических картах. Вектор напряжённости перпендикулярен эквипотенциальным поверхностям и направлен в сторону уменьшения потенциала.

Эквипотенциальные поверхности строятся обычно так, что разность потенциалов между двумя соседними поверхностями постоянна. Поэтому согласно формуле (14.21) расстояния между соседними эквипотенциальными поверхностями увеличиваются по мере удаления от точечного заряда, так как напряжённость поля уменьшается.

Эквипотенциальные поверхности однородного поля расположены на равных расстояниях друг от друга.

Вопросы к параграфу

    1. Чему равна разность потенциалов между двумя точками заряженного проводника?

    2. Как связана разность потенциалов с напряжённостью электрического поля?

    3. Потенциал электростатического поля возрастает в направлении снизу вверх. Куда направлен вектор напряжённости поля?

    4. Как строятся эквипотенциальные поверхности?

    5. Как по картине эквипотенциальных поверхностей поля можно судить о значении напряжённости в различных его точках?

Разность потенциалов или электрическое напряжение это отношение той работы, которую совершают силы электрического поля на перемещение заряда из одной точки поля в другую к величине этого заряда. При этом совершенно неважно, по какому пути будет перемещаться заряд. Важно лишь начало и конец пути. Траектория при этом не имеет никакого значения. Так как электрическое поле является потенциальным.

Для упрощения понимания приведем аналогию с гравитационным полем. Представим себе лестницу, груз лежит на последней ступени при этом он обладает потенциальной энергией. То есть если его уронить с этой высоты, скажем на ногу, то предположительно будет больно. Если бы груз лежал на первой ступени, было бы не так больно, так как он обладал бы значительно меньшей потенциальной энергией.

Теперь представим, что груз лежал на первой ступени и вдруг появился злодей. Он взял этот груз и долго ходил с ним по городу, потом подумал, а зачем он мне. И в итоге принес назад, но положил уже на последнюю ступень лестницы. Потенциальная энергия этого груза изменилась пропорционально высоте, а не как не тому расстоянию, которое прошёл злодей с этим грузом. И совершенно все равно, куда он успел его сводить в ресторан там или в кино, а может и в темную подворотню.

Если вы еще не поняли все это захватывающее повествование было для того чтобы пояснить тот факт что траектория перемещения заряда не имеет значение.

Представим поле, создаваемое двумя зарядами одинаковыми по величине и противоположными по знаку. Поле является электростатическим, так как заряды неподвижны. В этом поле перемещается еще один заряд из точки 1 в точку 2. При этом заряд может совершать перемещение по произвольной траектории.

Рисунок 1 — заряд в электростатическом поле

Для любого поля величина разности потенциалов для всех рассматриваемых зарядов будет постоянной. Так как величина силы действующей со стороны поля на этот заряд пропорциональна заряду. Работа, затрачиваемая на перемещение заряда, имеет вид

Разность потенциалов не имеет направления как напряжённость электрического поля или индукция магнитного. Потому что она является скалярной величиной. Единицей измерения в международной системе единиц СИ для разности потенциалов принят единица в один вольт.

Один вольт это разность потенциалов между двумя точками при условии, что заряд величиной в один кулон перемещается между этими точками, на что поле затрачивает работу в один джоуль.

Из определения следует, что разность потенциалов определяется между двумя точками. В каждой из которых значение потенциала известно. Иногда можно встретить вычисление напряжения из одного значения потенциала при этом подразумевается, что значение второго потенциала равно нулю.

Можно заметить некоторую особенность разности потенциалов. Она заключается в том, что на эквипотенциальной поверхности, в каких бы точках не производилось бы измерение, разность потенциалов будет равна нулю. Казалось бы, точки берутся в разных участках поля, но напряжения между ними нет. Это происходит по тому, что на эквипотенциальной поверхности значение потенциала постоянно и не меняется при движении вдоль нее.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

Следствие принци­па суперпозиции полей (потенциалы складываются алгебраически ).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение - разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: -Напряженность поля равна

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величи­на, равная

Поток вектора магнитной индук­ции Ф в через произвольную поверхность S равен

Теорема Гаусса для поля В: поток век­тора магнитной индукции через любую замкнутую поверхность равен нулю:

полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

Проводники в электростатическом поле. Электроемкость уединенного проводника.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

По гауссу

Величину

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости - фарад (Ф): 1Ф

Между напряженностью электрического поля и разностью потенциалов существует определенная зависимость. Пусть заряд перемещается в направлении напряженности однородного поля из точки в точку 2, находящуюся на расстоянии от точки (рис. 125). Электрическое поле совершает работу

Эту работу согласно формуле (8.24) можно выразить через разность потенциалов в точках и 2:

Приравнивая выражения для работы, найдем модуль вектора напряженности поля:

В этой формуле - разность потенциалов между точками 1 и 2, которые связаны вектором перемещения совпадающим по направлению с вектором Е (рис. 125).

Формула (8.28) показывает, что, чем меньше меняется потенциал на расстоянии тем меньше напряженность электрического поля. Если потенциал не меняется совсем, то напряженность поля равна нулю.

Так как при перемещении положительного заряда в направлении вектора Е электрическое поле совершает положительную работу то потенциал больше

потенциала Следовательно, напряженность электрического поля направлена в сторону убывания потенциала.

Любое электрическое поле в малой области пространства можно считать однородным. Поэтому формула (8.28) справедлива для произвольного электрического поля, если только расстояние настолько мало, что изменением напряженности поля на этом расстоянии можно пренебречь.

Единица напряженности электрического поля Единицу напряженности электрического поля в единицах СИ устанавливают на основе единицы разности потенциалов, используя формулу (8.28). Напряженность электрического поля равна единице, если разность потенциалов между двумя точками на расстоянии в однородном поле равна 1 В Наименование этой единицы вольт на метр

Как уже говорилось, напряженность можно также выражать в ньютонах на кулон. Действительно,

Эквипотенциальные поверхности. При перемещении заряда под углом 90° к силовым линиям поле не совершает работы, так как сила перпендикулярна перемещению. Значит, если провести поверхность, перпендикулярную в каждой точке силовым линиям, то при перемещении заряда вдоль этой поверхности работа не совершается. А это, в свою очередь, означает, что все точки поверхности, перпендикулярной силовым линиям, имеют один и тот же потенциал. Поверхности равного потенциала называют эквипотенциальными.

Эквипотенциальные поверхности однородного поля представляют собой плоскости (рис. 126), а поля точечного заряда - концентрические сферы (рис. 127). Эквипотенциальные поверхности поля диполя изображены на рисунке 128

Подобно силовым линиям, эквипотенциальные поверхности качественно характеризуют распределение поля в пространству.


Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону уменьшения потенциала. Так, например, потенциал поля точечного положительного заряда убывает по мере удаления от заряда, и напряженность поля направлена от заряда вдоль радиусов концентрических сфер (рис. 127).

Эквипотенциальной является поверхность любого проводника в электростатическом поле. Ведь силовые линии поля перпендикулярны поверхности проводника. Причем не только поверхность, но и все точки внутри проводника имеют один и тот же потенциал. Напряженность поля внутри проводника равна нулю, а значит, равна нулю и разность потенциалов между любыми точками проводника.

Таким образом, работа определяется произведением заряда на разность потенциалов начальной и конечной точек.

Из этой формулы разность потенциалов

Разность потенциалов - это скалярная физическая величина, численно равная отношению работы сил поля по перемещению заряда между данными точками поля к этому заряду.

В СИ единицей разности потенциалов является вольт (В).

1 В - разность потенциалов между двумя такими точками электростатического поля, при перемещении между которыми заряда в 1 Кл силами поля совершается работа в 1 Дж.

Разность потенциалов в отличие от потенциала не зависит от выбора нулевой точки. Разность потенциалов часто называют электрическим напряжением между данными точками поля:

Напряжение между двумя точками поля определяется работой сил этого поля по перемещению заряда в 1 Кл из одной точки в другую. В электростатическом поле напряжение вдоль замкнутого контура всегда равно нулю.

Работу сил электрического поля иногда выражают не в джоулях, а в электронвольтах. 1 эВ равен работе, совершаемой силами поля при перемещении электрона (е = 1,6·10 -19 Кл) между двумя точками, напряжение между которыми равно 1 В.

1 эВ = 1,6·10 -19 Кл·1 В = 1,6·10 -19 Дж.

1 МэВ = 10 6 эВ = 1,6·10 -13 Дж.

Электрическое поле графически можно изобразить не только с помощью линий напряженности, но и с помощью эквипотенциальных поверхностей.

Эквипотенциальной называется воображаемая поверхность, в каждой точке которой потенциал одинаков. Разность потенциалов между двумя любыми точками эквипотенциальной поверхности равна нулю.

Следовательно, работа по перемещению заряда вдоль эквипотенциальной поверхности равна 0. Но работа рассчитывается по формуле

Следовательно, линии напряженности перпендикулярны эквипотенциальным поверхностям. Первая эквипотенциальная поверхность металлического проводника - это поверхность самого заряженного проводника, что легко проверить электрометром. Остальные эквипотенциальные поверхности проводятся так, чтобы разность потенциалов между двумя соседними поверхностями была постоянной.

Картины эквипотенциальных поверхностей некоторых заряженных тел приведены на рис. 1.

Эквипотенциальными поверхностями однородного электростатического поля являются плоскости, перпендикулярные линиям напряженности (рис. 1, а).

Эквипотенциальные поверхности поля точечного заряда представляют собой сферы, в центре которых расположен заряд q (рис. 1, б).