Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Смотреть что такое "Титан" в других словарях. Физические характеристики и свойства одного из самых твердых металлов — титана

Смотреть что такое "Титан" в других словарях. Физические характеристики и свойства одного из самых твердых металлов — титана

Сплавы титана можно разделить на три группы по соотношению количкствава б-фазы (с гексагональной кристаллической решеткой) и в-фазы (с объемно-центрической кубической решеткой) различают б-, (б + в)- и в-сплавы.

По влиянию на температуру полиморфных превращений легирующие элементы (Легимрование (нем. legieren -- «сплавлять», от лат. ligare --«связывать») --добавление в состав материалов, примесей для изменения (улучшения) физических и/или химических свойств основного материала ) подразделяют на б-стабилизаторы, повышающие температуру полиморфного превращения, в-стабилизаторы, понижающие ее, и нейтральные упрочнители, мало влияющие на эту температуру. К б-стабилизаторам относят Al, In и Ga; к в-стабилизаторам - эвтектоидо-образующие (Cr, Mn, Fe, Co, Ni, Cu, Si) и изоморфные (V, Nb, Та, Mo, W) элементы, к нейтральным упрочнителям - Zr, Hf, Sn, Ge.

Элементы внедрения-вредные примеси (С, N, О), снижающие пластичность и технологичность металлов, и Н(гидроген), вызывающий водородную хрупкость сплавов.

На формирование структуры и, следовательно, свойств титановых сплавов решающее влияние оказывают фазовые превращения, связанные с полиморфизмом титана. На рис. 17.1 представлены схемы диаграмм состояния «титан-легирующий элемент», отражающие подразделение легирующих элементов по характеру влияния на полиморфные превращения титана на четыре группы.

Полиморфное b ® a -превращение может происходить двумя путями. При медленном охлаждении и высокой подвижности атомов оно происходит по обычному диффузионному механизму с образованием полиэдрической структуры твердого a -раствора. При быстром охлаждении -- по бездиффузионному мартенситному механизму с образованием игольчатой мартенситной структуры, обозначаемой a ў или при большей степени легированности -- a ў ў. Кристаллическая структура a, a ў, a ў ў практически однотипная (ГПУ), однако решетка a ў и a ў ў более искажена, причем степень искаженности возрастает с увеличением концентрации легирующих элементов. Есть сведения [ 1], что решетка a ў ў -фазы скорее ромбическая, чем гексагональная. При старении из фаз a ўи a ў ў выделяется b -фаза или интерметаллидная фаза.

Рисунок 1

Отжиг проводится для всех титановых сплавов с целью завершения формирования структуры, выравнивания структурной и концентрационной неоднородности, а также механических свойств. Температура отжига должна быть выше температуры рекрисаллизации, но ниже температуры перехода в b -состояние (Т пп) во избежание роста зерна. Применяют обычный отжиг, двойной или изотермический (для стабилизации структуры и свойств), неполный (для снятия внутренних напряжений).

Закалка и старение (упрочняющая термообработка) применима к титановым сплавам с (a + b)-структурой. Принцип упрочняющей термообработки заключается в получении при закалке метастабильных фаз b, a ў, a ў ў и последующем их распаде с выделением дисперсных частиц a - и b -фаз при искусственном старении. При этом эффект упрочнения зависит от типа, количества и состава метастабильных фаз, а также дисперсности образовавшихся после старения частиц a - и b -фаз.

Химико-термическая обработка проводится для повышения твердости и износостойкости, стойкости к «схватыванию» при работе в условиях трения, усталостной прочности, а также улучшения коррозионной стойкости, жаростойкости и жаропрочности. Практическое применение имеют азотирование, силицирование и некоторые виды диффузионной металлизации.

б-сплавы

Сплавы с б-структурой: ВТ1-0, ВТ1-00, ВТ5, ВТ5-1, ОТ4, ОТ4-0, ОТ4-1.Их легируют Al, Sn и Zr. Они отличаются повышенной жаропрочностью, высокой термической стабильностью, малой склонностью к хладноломкости, хорошей свариваемостью. Основной вид термической обработки-отжиг при 590-740 °С. Применяется для изготовления деталей, работающих при температурах до 400-450 °С; сплав Ti высокой чистоты (5% А1 и 2,5% Sn)-один из лучших материалов для работы при криогенных температурах (до 20 К).

ВТ1-0:

ВТ1-0 - это б-сплав, который насыщается с целью повышения температуры полиморфного преобразования титана стабилизаторами:

  • · алюминий (AL);
  • · галлий (Ga);
  • · индий (In);
  • · углерод;
  • · азот;
  • · кислород.

При температуре 882,5 градуса Цельсия структура сплава - ГПУ(гексагональная плотноупакованная), то есть с макисмально плотной упаковкой шаров атомов. В диапазоне температур от 882,5 градуса Цельсия до точки плавления имеет место ОЦК структура, то есть объемноцентрированная решетка.

Титан ВТ1-0 высокочистый, легкий, жаропрочный. Плавление наступает при температуре 1668°С. Сплав характеризуется невысоким тепловым коэффициентом расширения. Он малоплотный (плотность составляет всего 4,505 г/см 3) и высокопластичный (пластичность может составлять от 20 до 80%). Эти качества делают возможным получение из описываемого сплава деталей любой нужной формы. Сплав стоек к коррозии за счет наличия на его поверхности оксидной защитной пленки.

Среди недостатков можно выделить необходимость в высоких трудозатратах на его производстве. Плавление титана наступает лишь в вакуумной или инертной газовой среде. Это связано с активным взаимодействием жидкого титана практически со всеми газами атмосферы. Кроме того сплав марки ВТ1-0 плохо режется, хоть и его прочность не так высока в сравнении с другими. Чем меньше в составе сплава алюминия, тем ниже показатели его прочности и жаропрочности, а водородная хрупкость выше.

Благодаря своим высоким техническим характеристикам сплав ВТ1-0 идеален для изготовления трубы, различной штамповки и литых элементов в ракето-, авиа- и судостроительной, химической и энергетической промышленности.Благодаря низкому тепловому коэффициенту расширения материал превосходно сочетается с другими (стекло, камень и прочие), что делает его эффективным в строительной сфере. Металл немагнитен и имеет высокое электрическое сопротивление, чем отличается от многих других металлов. За счет этих качеств он просто незаменим в таких сферах, как радиоэлектроник, электротехника. Биологически инертен, то есть безвреден для человеческого организма, благодаря чему находит применение во многих сферах медицины.

ОТ-4-0:

Сплав марки ОТ4-0 входит в категорию псевдо б-сплавов. Данные сплавы не подлежат термическому упрочнению и классифицируются следующим образом:

  • 1. Низкопрочные сплавы с низкими содержанием в составе алюминия и невысоким процентом в-стабилизаторов, что делает их высокотехнологичными. Они хорошо поддаются любым видам сварки.
  • 2. Высокопрочные супер б-сплавы.

В процентном соотношении их состав следующий:

  • · алюминий (Аl) составляет 0,8%;
  • · марганец (Mn) составляет 0,8%;
  • · эквивалент алюминия составляет 1,8%;
  • · эквивалент марганца составляет 1,3%.

Для него характерна средняя степень прочности, увеличивающаяся посредством добавления алюминия. Недостаток заключается в том, что это снижает технологичность материала. Легирование марганцем помогает улучшить технологичность материала в условиях горячей обработки давлением. Как в горячем, так и в холодном состоянии, сплав легко подвергается деформации. Штамповка возможна даже в условиях комнатной температуры, сталь легко подвергается свариванию. К существенным недостаткам этого сплава относится его низкая прочность, а также предрасположенность к хрупкости в условиях агрессивного воздействия водорода.

Сплав идет на изготовление высокотехнологичных деталей, предназначенных для процедуры холодной штамповки. Из него изготавливают многие разновидности металлопроката: трубу, проволоку, лист и прочие. Высокие эксплуатационные свойства сплава, среди которых стойкость к коррозии и эрозии, сопротивление баллистическому воздействию, делают его эффективным в конструировании атомных энергетических установок, теплообменников и трубопроводов, дымоходов на кораблях, насосов и прочих подобных элементов конструкций. Труба ОТ4-0 активно применяется в ядерно-энергетической и химической промышленности.

(б+в)-сплавы

Сплавы с (б+в) структурой: сплавы ВТ14, ВТ9, ВТ8, ВТ6, ВТ6С, ВТ3-1, ВТ22, ВТ23. Благодаря более пластичной бета фазе эти сплавы более технологичны и лучше обрабатываются давлением, чем альфа сплавы.

(a + b)-структуры легируют А1, V, Zr, Cr, Fe, Mo, Si, W; в отожженном состоянии они содержат 5-50% b-фазы. Отличаются наиболее благоприятным сочетанием механических и технологических свойств, высокой прочностью, способностью к термическому. упрочнению в результате закалки и старения, удовлетворительной свариваемостью, меньшей склонностью к водородной хрупкости по сравнению с б-сплавами. Прочностные свойства промышленных (б + в)-сплавов в отожженном состоянии возрастают с увеличением содержания в них в-стабилизаторов. Увеличение содержания Al в сплавах повышает их жаропрочность, снижает пластичность и технологичность при обработке давлением.

ВТ3-1:

Сплав на основе титана марки ВТ3-1 принадлежит к категории б + в-сплавов. Он легируется такими элементами:

  • · алюминий (Al) в объеме 6,3%;
  • · молибден (Mo) в объеме 2,5%;
  • · медь (Cu) в объеме 1,5%;
  • · железо (Fe) в объеме 0,5%;
  • · кремний (Si) в объеме 0,3%.

Металлопрокат ВТ3-1 стойкий к коррозии и химическому воздействию. Для него характерны такие качества, как повышенная жаропрочность, небольшой тепловой коэффициент расширения, а также легкость и пластичность. На способность материала к сопротивлению усталости оказывают влияние внешние факторы. Так, в вакуумной среде сплав выносливее, чем под воздействием воздуха. Также заметно влияет на выносливость его поверхность, то есть состояние, в котором она находится, и качество. Шероховатая ли она, имеет ли неровности, какими свойствами обладают поверхностные слои? От этих факторов и зависит выносливость титановых полуфабрикатов.

Увеличению предела выносливости способствует мягкая финальная механическая обработка. Имеется ввиду обязательное снятие слоя тонкой стружки толщиной до 0,1 мм, а затем полировка вручную с использованием медной шкурки, шероховатость которой лежит в пределах 8-9 класса. Если же была произведена шлифовка абразивами и форсированная резка, то такой сплав будет плохо сопротивляться усталости.

К металлопрокату из титана этой марки предъявляют некоторые требования. Так, он должен быть светлого чистого цвета, а на его поверхности не иметь потемнений, потеков. Волнистость, которая появляется после отжига, не относится к браку. Среди недостатков сплава ВТ3-1 выделяют необходимость в больших трудозатратах при его производстве и высокую себестоимость. Такие металлы лучше реагируют на сжатие, чем на растяжение.

Металлопрокат ВТ3-1, в числе которого проволока, прут, круг и другие, благодаря их пригодности к экстремальным условиям использования используются в судо-, авиа- и ракетостроении. Благодаря стойкости к коррозии и негативному воздействию кислотных сред сплав находит широкое применение в химическом и нефтегазовом производстве. Биологическая инертность, то есть безопасность для организма обеспечивает ему активное использование в пищевой, сельскохозяйственной и медицинской сфере.

ВТ-6 обладает следующими характеристиками:

  • · повышенная удельная прочность;
  • · низкая восприимчивость к воздействию водорода в сравнении со сталью марки ОТ4;
  • · низкая предрасположенность к коррозии под воздействием соли;
  • · высокая технологичность: при нагреве он легко подвергается деформации.

Из сплава описываемой марки изготавливают большой ассортимент металлопроката: пруток, труба, штамповка, плита, лист и многие другие разновидности.

Сварка их осуществляется рядом традиционных способов, среди которых и диффузионный. В результате использования электронно-лучевой сварки сварной шов по прочности сравним с основным материалом.

Титан марки ВТ6 одинаково широко используется и отожженным, и термически обработанным, а значит более высококачественным.

Отжиг листа, трубы тонкостенной, профиля выполняется в температурном диапазоне от 750 до 800 градусов Цельсия. Охлаждение его выполняется либо на открытом воздухе, либо в печи.

Крупный металлопрокат, такой как пруток, штамповки, поковки отжигаются в температурном диапазоне от 760 до 800 градусов Цельсия. Охлаждается в печи, что защищает крупные изделия от деформации, а мелкие - от частичной закалки.

Существует теория, что более рационально производить отжиг в диапазоне температур от 900 до 950°С. Это повысит вязкость разрушения, ударную вязкость и, благодаря смешанному составу с большим процентом пластичной составляющей, сохранит пластичность изделия. Также подобный способ отжига повысит сопротивляемость сплава коррозии.

Его используют в производстве (при сварке) крупных конструкций, к примеру таких, как конструктивные элементы летательных устройств. Также это создание баллонов, способных выдерживать внутри себя повышенное давление в температурном диапазоне -196 - 450 С. По данным западных СМИ, примерно половина всего титана, который используется в авиационной промышленности, составляет именно титан марки ВТ-6.

в-сплавы

Сплавы с в-структурой. Некоторые опытные ВТ15, ТС6 с высоким содержанием хрома и молибдена. Эти сплавы сочетают хорошую технологическую пластичность с очень высокой прочностью и хорошей свариваемостью.

Полуфабрикаты из титана и титановых сплавов производятся во всевозможных формах и видах: титановые слитки, титановые слябы, заготовки, титановые листы и титановые плиты, титановые ленты и полосы, титановые прутки (или титановые круги), титановая проволока, титановые трубы.

К данной группе относятся сплавы, в структуре которых преобладает твердый раствор на основе в-модификации титана. Основными легирующими элементами являются в-стабилизаторы (элементы, понижающие температуру полиморфного превращения титана).В состав в-сплавов почти всегда входит алюминий, который их упрочняет.

Благодаря кубической решетке в-сплавы легче, чем б- и (б+в)-сплавы, подвергаются холодной деформации, хорошо упрочняются при термообработке, заключающейся в закалке и старении, и удовлетворительно свариваются; они имеют достаточно высокую жаропрочность, однако при легировании их только в-стабилизаторами жаропрочность с ростом температуры выше 400°С заметно снижается. Сопротивление ползучести и термическая стабильность сплавов этого типа ниже, чем у сплавов на основе а- твердого раствора.

После старения прочность в-сплавов может достигать 1700 МПа (в зависимости от марки сплава и типа полуфабриката). Несмотря на благоприятное сочетание прочностных и пластических характеристик, в-сплавы имеют ограниченную область применения вследствие высокой стоимости и сложности производственного процесса, а также необходимости строгого соблюдения технологических параметров.

Спектр применения в-сплавов все же довольно широкий -- от дисков авиационных двигателей до различных протезов медицинского назначения. В условиях промышленного производства возможно прогнозировать свойства по микроструктуре крупногабаритных штамповок. Однако вследствие сложности ее могут возникать затруднения в ходе УЗ-контроля.

НАПИШИТЕ НАМ СЕЙЧАС!

ЖМИТЕ НА КНОПКУ В ПРАВОМ НИЖНЕМ УГЛУ ЭКРАНА, ПИШИТЕ И ПОЛУЧИТЕ ЕЩЕ ЛУЧШУЮ ЦЕНУ!

Компания «ПерфектМеталл» закупает, наряду с другими металлами, лом титана. Любые пункты приема металлолома компании примут у вас титан, изделия из сплавов титана, титановую стружку и т.п. Откуда титан попадает в пункты сдачи металлолома? Все очень просто, этот металл нашел очень широкое применение как в промышленных целях, так и в быту человека. Сегодня этот металл используется при строительстве космических и военных ракет, много его используется и в самолетостроении. Из титана строят прочные и легкие морские суда. Химическая промышленность, ювелирное дело, не говоря уже об очень широком применении титана в медицинской промышленности. И все это из за того, что титан и его сплавы обладают рядом уникальных свойств.

Титан – описание и свойства

Земная кора, как известно, насыщенна многочисленным рядом химических элементов. Среди часто встречающихся среди них — титан. Можно сказать, что он находится на 10-м месте ТОПа самых распространенных хим элементов Земли. Титан - металл серебристо-белого цвета, стоек ко многим агрессивным средам, не подвержен окислению в ряде мощнейших кислот, исключениями являются лишь плавиковая, ортофосфорная серная кислота в высокой концентрации. Титан в чистом виде относительно молод, его получили лишь в 1925 году.

Пленка оксида, которая покрывает титан в чистом виде, служит весьма надежной защитой этого металла от коррозии. Ценится титан и за его низкую теплопроводность, для сравнения — титан в 13 раз хуже проводит тепло чем алюминий, а вот с проводимостью электричества обратная картина — титан обладает гораздо большим сопротивлением. Все же самой главная отличительная черта титана — его колоссальная прочность. Опять же если сравнить ее теперь с чистым железом, то титан в два раза превышает его прочность!

Сплавы титана

Сплавы из титана обладают так же выдающимися свойствами, среди которых на первом месте, как вы уже могли догадаться — прочность. Как конструкционный материал, титан уступает в прочности лишь бериллиевым сплавам. Однако неоспоримым преимуществом сплавов титана является их высокая стойкость к истиранию, износу и в то же время достаточная пластичность.

Титановые сплавы устойчивы к воздействию целого ряда активных кислот, солей, гидроксидов. Эти сплавы не боятся и высокотемпературных воздействий, именно поэтому из титана и его сплавов изготавливают турбины реактивных двигателей, да и вообще широко используются в ракетостроении и авиационной промышленности.

Где используется титан

Титан используется там, где необходим очень прочный материал, обладающий максимальной стойкостью к различным видам негативного воздействия. Например, в химической промышленности титановые сплавы применяются для производства насосов, емкостей и трубопроводов для транспортировки агрессивных жидкостей. В медицине титан служит для протезирования и обладает отличной биологической совместимостью с организмом человека. Кроме того, сплав титана и никеля – нитинол – обладает “памятью”, что позволяет использовать его в ортопедической хирургии. В металлургии титан служит легирующим элементом, который вводят в состав некоторых видов стали.

Благодаря сохранению пластичности и прочности под воздействием низких температур, металл используют в криогенной технике. В авиа- и ракетостроении титан ценится за свою жаропрочность, а наиболее широкое распространение здесь получил его сплав с алюминием и ванадием: именно из него изготавливают детали для корпусов летательных аппаратов и реактивных двигателей.

В свою очередь, в судостроении титановые сплавы применяют для изготовления металлических изделий с повышенной коррозийной устойчивостью. Но, помимо промышленного использования, титан служит сырьем для создания украшений и аксессуаров, так как он хорошо поддается таким методам обработки, как полировка или анодирование. В частности, из него отливают корпуса наручных часов и ювелирные украшения.

Титан получил широкое применение в составе различных соединений. Например, диоксид титана входит в состав красок, используется в процессе производства бумаги и пластика, а нитрид титана выступает в роли защитного покрытия инструментов. Несмотря на то, что титан называют металлом будущего, на данном этапе сфера его применения серьезно ограничена высокой стоимостью получения.

Таблица 1

Химический состав промышленных титановых сплавов.
Тип сплава Марка сплава Химический состав, % (остальное Ti)
Аl V Mo Mn Cr Si Другие элементы
a ВТ5
ВТ5-1
4,3-6,2
4,5-6,0






2-3Sn
Псевдо-a ОТ4-0
ОТ4-1
ОТ4
ВТ20
ВТ18
0,2-1,4
1,0-2,5
3,5-5,0
6,0-7,5
7,2-8,2



0,8-1,8



0,5-2,0
0,2-1,0
0,2-1,3
0,7-2,0
0,8-2,0









0,18-0,5



1,5-2,5Zr
0,5-1,5Nb
10-12Zr
a + b ВТ6С
ВТ6
ВТ8
ВТ9
ВТ3-1
ВТ14
ВТ16
ВТ22
5,0-6,5
5,5-7,0
6,0-7,3
5,8-7,0
5,5-7,0
4,5-6,3
1,6-3,0
4,0-5,7
3,5-4,5
4,2-6,0



0,9-1,9
4,0-5,0
4,0-5,5


2,8-3,8
2,8-3,8
2,0-3,0
2,5-3,8
4,5-5,5
4,5-5,0











1,0-2,5


0,5-2,0


0,20-0,40
0,20-0,36
0,15-0,40





0,8-2,5Zr
0,2-0,7Fe


0,5-1,5Fe
b ВТ15 2,3-3,6 6,8-8,0 9,5-11,0 1,0Zr

Все, что нужно знать о титане, а также о хроме и вольфраме

Многих интересует вопрос: какой самый твердый металл в мире? Это титан. Этому твердому веществу и будет посвящена большая часть статьи. Также немного ознакомимся и с такими твердыми металлами как хром и вольфрам.

9 интересных фактов о титане

1. Существует несколько версий, почему металл получил такое название. Согласно одной теории, его назвали в честь Титанов, бесстрашных сверхъестественных существ. По другой версии, название пошло от Титании, королевы фей.
2. Титан был открыт в конце XVIII века немецким и английским химиком.
3. Титан долго не использовали в промышленности из-за его природной хрупкости.
4. В начале 1925 года, после серии опытов, химики получили титан в чистом виде.
5. Стружка от титана легко воспламеняется.
6. Это один из самых легких металлов.
7. Титан может расплавиться только при температуре выше 3200 градусов.
8. Закипает при температуре 3300 градусов.
9. Титан имеет серебряный цвет.

История открытия титана

Металл, который впоследствии назвали титан, открыли двое ученых – англичанин Уильям Грегор и немец Мартин Грегор Клапрот. Ученые работали параллельно, и между собой не пересекались. Разница между открытиями составляет 6 лет.

Уильям Грегор дал своему открытию название — менакин.

Более чем через 30 лет был получен первый сплав титана, который оказался чрезвычайно хрупким, и не мог нигде использоваться. Считается, что лишь в 1925 году был выделен титан в чистом виде, который стал одним из самых востребованных в промышленности металлов.

Доказано, что российский ученый Кириллов в 1875 году сумел добыть чистый титан. Он опубликовал брошюру, в которой подробно описал свою работу. Однако исследования малоизвестного россиянина остались незамеченными.


Общая информация о титане

Титановые сплавы – спасение для механиков и инженеров. Например, корпус самолета изготовлен из титана. Во время полета он достигает скорости в несколько раз больше, чем скорость звука. Титановый корпус нагревается до температуры выше 300 градусов, и не плавится.

Металл замыкает десятку лидеров «Самых распространенных металлов в природе». Большие залежи обнаружены в ЮАР, Китае и , немало титана в Японии, Индии, на Украине.

Общее количество мирового запаса титанов насчитывает более 700 миллионов тонн. Если темпы добычи останутся прежними, титана хватит еще на 150-160 лет.

Крупнейший производитель самого твердого металла в мире – российское предприятие «ВСМПО-Ависма», которое удовлетворяет треть мировых потребностей.


Свойства титана

1. Коррозийная стойкость.
2. Высокая механическая прочность.
3. Небольшая плотность.

Атомный вес титана составляет 47, 88 а.е.м, порядковый номер в химической таблице Менделеева – 22. Внешне он очень похож на сталь.

Механическая плотность металла в 6 раз больше, чем у алюминия, в 2 раза выше, чем у железа. Он может соединиться с кислородом, водородом, азотом. В паре с углеродом металл образует невероятно твердые карбиды.

Теплопроводность титана в 4 раза меньше, чем у железа, и в 13 раз – чем у алюминия.



Процесс добычи титана

В земле титана большое количество, однако, извлечь его из недр стоит немалых денег. Для выработки используют иодидный метод, автором которого считается Ван Аркель де Бур.

В основе метода – способность металла сочетаться с иодом, после разложения этого соединения можно получить чистый, свободный от посторонних примесей титан.

Самые интересные вещи из титана:

  • протезы в медицине;
  • платы мобильных устройств;
  • ракетные комплексы для освоения Космоса;
  • трубопроводы, насосы;
  • навесы, карнизы, наружная обшивка зданий;
  • большинство деталей (шасси, обшивка).

Сферы применения титана

Титан активно используют в военной сфере, медицине, ювелирном деле. Ему дали неофициальное название «металл будущего». Многие говорят, что он помогает превратить мечту в реальность.

Самый твердый металл в мире изначально стали применять в военной и оборонной сфере. Сегодня основным потребителем титановых изделий является авиастроение.

Титан – универсальный конструкционный материал. Долгие годы он применялся для создания турбин самолетов. В авиационных двигателях из титана делают элементы вентилятора, компрессоры, диски.

Конструкция современного летательного аппарата может содержать до 20 тонн титанового сплава.

Основные сферы применения титана в авиастроении:

  • продукция пространственной формы (окантовка дверей, люков, обшивка, настил пола);
  • агрегаты и узлы, которые подвержены сильным нагрузкам (кронштейны крыльев, стойки шасси, гидроцилиндры);
  • части двигателя (корпус, лопатки для компрессоров).

Благодаря титану человек смог пройти сквозь звуковой барьер, и ворваться в Космос. Его использовали для создания пилотируемых ракетных комплексов. Титан может выдержать космическую радиацию, перепады температур, скорость движения.

Этот металл имеет небольшую плотность, что важно в судостроительной сфере. Изделия из титана легкие, а значит, снижается вес , увеличивается его маневренность, скорость, дальность хода. Если корпус корабля обшить титаном, его не нужно будет красить много лет – титан не ржавеет в морской воде (коррозийная стойкость).

Чаще всего этот металл в судостроении используют для изготовления турбинных двигателей, паровых котлов, конденсаторных труб.


Нефтедобывающая отрасль и титан

Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю – свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины.

Не так давно титан стал активно использоваться для создания скважин на морских шельфах. Специалисты применяют титановые сплавы в качестве оборудования:

  • нефтедобывающие установки;
  • сосуды высокого давления;
  • глубоководные насосы, трубопроводы.

Титан в спорте, медицине

Титан крайне популярен в спортивной сфере из-за своей прочности и легкости. Несколько десятилетий назад из титановых сплавов сделали велосипед, первый спортивный инвентарь из самого твердого материала в мире. Современный велосипед состоит из титанового корпуса, такого же тормоза и пружин сидений.

В Японии создали титановые клюшки для игры в гольф. Эти приспособления легкие и долговечные, но крайне дорогие по цене.

Из титана делают большинство предметов, которые лежат в рюкзаке альпинистов и путешественников – столовая посуда, наборы для приготовления еды, стойки для укрепления палаток. Титановые ледорубы – очень востребованный спортивный инвентарь.

Этот металл очень востребован в медицинской отрасли. Из титана делают большинство хирургических инструментов – легких и удобных.

Еще одна сфера применения металла будущего – создание протезов. Титан превосходно «сочетается» с организмом человека. Медики назвали этот процесс «настоящее родство». Конструкции из титана безопасны для мышц и костей, редко вызывают аллергическую реакцию, не разрушаются под воздействием жидкости в организме. Протезы из титана стойкие, выдерживают огромные физические нагрузки.

Титан – удивительный металл. Он помогает человеку достичь невиданных высот в различных сферах жизни. Его любят и почитают за прочность, легкость и долгие годы службы.



Одним из самых твердых металлов является и хром

Интересные факты о хроме

1. Название металла происходит от греческого слова «chroma», что в переводе означает краска.
2. В естественной среде хром в чистом виде не встречается, а только в виде хромистого железняка, двойного оксида.
3. Самые большие месторождения металла расположены в ЮАР, России, Казахстане и Зимбабве.
4. Плотность металла – 7200кг/м3.
5. Хром плавится при температуре 1907 градусов.
6. Закипает при температуре 2671 градусов.
7. Совершенно чистый без примесей хром характеризуется тягучестью и вязкостью. В сочетании с кислородом, азотом или водородом металл становится ломким и очень твердым.
8. Этот металл серебристо-белого цвета открыл француз Луи Никола Воклен в конце XVIII века.


Свойства металла хрома

У хрома очень высокая твердость, им можно разрезать стекло. Он не окисляется воздухом, влагой. Если металл нагреть, окисление произойдет только на поверхности.

В год потребляют более 15 000 тон чистого хрома. Лидером по производству чистейшего хрома считается английская компания «Bell Metals».

Больше всего хрома потребляют в США, западных странах Европы и Японии. Рынок хрома нестабилен, и цены охватывают широкий диапазон.


Сферы использования хрома

Чаще всего применяется для создания сплавов и гальванических покрытий (хромирование на транспорт).

Хром добавляют в сталь, что улучшает физические свойства металла. Эти сплавы – наиболее востребованы в черной металлургии.

Сталь самой популярной марки состоит из хрома (18%) и никеля (8%). Такие сплавы отлично противостоят окислению, коррозии, прочны даже при высоких температурах.

Из стали, которая содержит треть хрома, изготавливают нагревательные печи.

Что еще делают из хрома?

1. Стволы огнестрельного оружия.
2. Корпус подводных лодок.
3. Кирпичи, которые используют в металлургии.


Еще одним чрезвычайно твердым металлом является вольфрам

Интересные факты о вольфраме

1. Название металла в переводе с немецкого («Wolf Rahm») означает «пена волка».
2. Это наиболее тугоплавкий металл в мире.
3. Вольфрам имеет светло-серый оттенок.
4. Металл был открыт в конце XVIII века (1781г) шведом Карлом Шееле.
5. Вольфрам плавится при температуре 3422 градусов, кипит – при 5900.
6. Металл имеет плотность 19.3 г/см³.
7. Атомная масса – 183.85, элемент VI группы в периодической системе Менделеева (порядковый номер – 74).


Процесс добычи вольфрама

Вольфрам относится к большой группе редких металлов. В нее входит также рубидий, молибден. Для этой группы характерна небольшая распространенность металлов в природе и малые масштабы потребления.

Получение вольфрама состоит из 3 этапов:

  • отделение металла от руды, скапливание его в растворе;
  • выделение соединения, его очистка;
  • выделение чистого металла из готового химического соединения.
  • Исходный материал для получения вольфрама – шеелит и вольфрамит.


Сферы применения вольфрама

Вольфрам является основой большинства прочных сплавов. Из него делают авиационные двигатели, детали электровакуумных приборов, нити накаливания.
Высокая плотность металла позволяет использовать вольфрам для создания баллистических ракет, пуль, противовесы, артиллерийские снаряды.

Соединения на основе вольфрама применяют для обработки других металлов, в горнодобывающей промышленности (бурение скважин), лакокрасочной, текстильной сфере (как катализатор органического синтеза).

Из сложных вольфрамовых соединений делают:

  • проволоки – используются в нагревательных печах;
  • ленты, фольгу, пластины, листы – для прокатки и плоской ковки.


Титан, хром и вольфрам возглавляют список «Самые твердые металлы в мире». Их используют во многих сферах деятельности человека – авиа и ракетостроении, военной области, строительстве, и при этом, это далеко не полный спектр применения металлов.

Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

Основные характеристики

Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

В чистом виде титан обладает следующими качествами и характеристиками:

  • номинальная температура плавления — 1 660°С;
  • при термическом воздействии +3 227°С закипает;
  • предел прочности при растяжении – до 450 МПа;
  • характеризуется небольшим показателем упругости – до 110,25 ГПа;
  • по шкале НВ твердость составляет 103;
  • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
  • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
  • минимальный коэффициент термического расширения;
  • этот элемент является парамагнитом.

Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

Области применения

Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

Кроме этого, материал с добавками титана нашел применение в следующих областях:

  • Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы.
  • Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций.
  • Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана.
  • В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования.
  • Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

Особенности обработки

Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

При этом учитываются такие нюансы:

  • Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях.
  • Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин.
  • Сварка. Обязательно соблюдение особых условий.

Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

Титан в виде оксида (IV) был открыт английским любителем-минералогом У. Грегором в 1791 году в магнитных железистых песках местечка Менакан (Англия); в 1795 году немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный оксид этого же металла, названного им "титаном" [в греческой мифологии титаны - дети Урана (Неба) и Геи (Земли)]. Выделить Титан в чистом виде долго не удавалось; лишь в 1910 году американский ученый М. А. Хантер получил металлический Титан нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Титана появилась только в 1925, когда нидерландские ученые А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Распространение Титана в природе. Титан - один из распространенных элементов, среднее содержание его в земной коре (кларк) составляет 0,57% по массе (среди конструкционных металлов по распространенности занимает 4-е место, уступая железу, алюминию и магнию). Больше всего Титана в основных породах так называемых "базальтовой оболочки" (0,9%), меньше в породах "гранитной оболочки" (0,23%) и еще меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным Титаном, относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и другие. Известно 67 минералов Титан, в основном магматического происхождения; важнейшие - рутил и ильменит.

В биосфере Титан в основном рассеян. В морской воде его содержится 10 -7 %; Титан - слабый мигрант.

Физические свойства Титана. Титан существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива α-форма с гексагональной плотноупакованной решеткой (а = 2,951Å, с = 4,679Å), a выше этой температуры - β-форма с кубической объемноцентрированной решеткой а = 3,269Å. Примеси и легирующие добавки могут существенно изменять температуру α/β превращения.

Плотность α-формы при 20°С 4,505 г/см 3 , a при 870°С 4,35 г/см 3 ; β-формы при 900°С 4,32 г/см 3 ; атомный радиус Ti 1,46 Å, ионные радиусы Ti + 0,94 А, Ti 2+ 0,78 Å, Ti 3+ 0,69 Å, Ti 4+ 0,64 Å; Т пл 1668 °С, Т кип 3227 °С; теплопроводность в интервале 20-25°С 22,065 вт/(м·К) ; температурный коэффициент линейного расширения при 20°С 8,5·10 -6 , в интервале 20-700°С 9,7·10 -6 ; теплоемкость 0,523 кдж/(кг·К) ; удельное электросопротивление 42,1·10 -6 ом·см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38 К. Титан парамагнитен, удельная магнитная восприимчивость 3,2·10 -6 при 20 °С. Предел прочности 256 Мн/м 2 (25,6 кгс/мм 2), относительное удлинение 72% , твердость по Бринеллю менее 1000 Мн/м 2 (100 кгс/мм 2). Модуль нормальной упругости 108 000 Мн/м 2 (10 800 кгс/мм 2). Металл высокой степени чистоты ковок при обычной температуре.

Применяемый в промышленности технический Титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300-550 Мн/м 2 (30-55кгс/мм 2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2). Конфигурация внешней электронной оболочки атома Ti 3d 2 4s 2 .

Химические свойства Титана. Чистый Титан - химически активный переходный элемент, в соединениях имеет степени окисления +4, реже +3 и +2. При обычной температуре и вплоть до 500-550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной оксидной пленки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием ТiO 2 . Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной пленки путем удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Оксидная пленка не защищает Титан в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Титан обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практическое использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Титане является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Титан реагирует при температуре выше 700 °С, причем получаются нитриды типа TiN; в виде тонкого порошка или проволоки Титан может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Титане значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твердостью и хрупкостью и должен удаляться с поверхности титановых изделий путем травления или механической обработки. Титан энергично взаимодействует с сухими галогенами, по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Титана, причем реакция иногда идет со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органических кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Титаном.

Титан коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и других отраслях промышленности, а также в гидрометаллургии. Титан образует с С, В, Se, Si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твердостью. Карбид TiC (t пл 3140 °С) получают нагреванием смеси TiO 2 с сажей при 1900-2000 °С в атмосфере водорода; нитрид TiN (t пл 2950 °С) - нагреванием порошка Титан в азоте при температуре выше 700 °С. Известны силициды TiSi 2 , TiSi и бориды TiB, Ti 2 B 5 , TiB 2 . При температуpax 400-600 °C Титан поглощает водород с образованием твердых растворов и гидридов (TiH, TiH 2). При сплавлении TiO 2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, Na 2 TiO 3 и Na 4 TiO 4), а также полититанаты (например, Na 2 Ti 2 O 5 и Na 2 Ti 3 O 7). К титанатам относятся важнейшие минералы Титана, например, ильменит FeTiO 3 , перовскит CaTiO 3 . Все титанаты малорастворимы в воде. Оксид Титана (IV), титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат TiOSO 4 . При разбавлении и нагревании растворов в результате гидролиза осаждается Н 2 ТiO 3 , из которой получают оксид Титана (IV). При добавлении перекиси водорода в кислые растворы, содержащие соединения Ti (IV), образуются перекисные (надтитановые) кислоты состава Н 4 ТiO 5 и H 4 TiO 8 и соответствующие им соли; эти соединения окрашены в желтый или оранжево-красный цвет (в зависимости от концентрации Титана), что используется для аналитического определения Титана.

Получение Титана. Наиболее распространенным методом получения металлического Титана является магниетермический метод, то есть восстановление тетрахлорида Титана металлическим магнием (реже - натрием):

TiCl 4 + 2Mg = Ti + 2MgCl 2 .

В обоих случаях исходным сырьем служат оксидные руды Титана - рутил, ильменит и другие. В случае руд типа ильменитов Титан в форме шлака отделяется от железа путем плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Титана, который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Титан по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Титана с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт - хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Титана и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление оксида Титана (IV) гидридом кальция.

Применение Титана. Основные преимущества Титана перед другими конструкционными металлами: сочетание легкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (т. е. прочности, отнесенной к плотности) превосходят большинство сплавов на основе других металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов. Однако как самостоятельный конструкционный материал Титан стал применяться только в 50-е годы 20 века в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Титан условно относили к редким металлам). Основная часть Титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Сплавы Титана с железом, известные под названием "ферротитан" (20-50% Титана), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Титан идет на изготовление емкостей, химические реакторов, трубопроводов, арматуры, насосов и других изделий, работающих в агрессивных средах, например, в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Титана. Он служит для покрытия изделий из стали. Использование Титана дает во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Титана делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Титана повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Титан хорошо поддается полировке, цветному анодированию и других методам отделки поверхности и поэтому идет на изготовление различных художественных изделий, в т. ч. и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений Титана практическое значение имеют оксиды, галогениды, а также силициды, используемые в технике высоких температур; бориды и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Титана, обладающий высокой твердостью, входит в состав инструментальных твердых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Оксид титана (IV) и титанат бария служат основой титановой керамики, а титанат бария - важнейший сегнетоэлектрик.

Титан в организме. Титан постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация - около 10 -4 % , в морских - от 1,2·10 -3 до 8·10 -2 %, в тканях наземных животных - менее 2·10 -4 %, морских - от 2·10 -4 до 2·10 -2 %. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезенке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Титана с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно).