Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Сообщение на тему схемы и конструкции разрядника. Разрядник вентильный: основные характеристики, типы, принцип действия. Работа и сигнализация о повреждении

Сообщение на тему схемы и конструкции разрядника. Разрядник вентильный: основные характеристики, типы, принцип действия. Работа и сигнализация о повреждении

Даже представить страшно загородную собственность без электроприборов. Пусть и в ночном кошмаре не снятся лучина или коромысло с корытом. Да здравствуют стиральные машины, насосы, светильники, водонагреватели и еще масса полезных изобретений, участвующих в формировании цивилизованных условий! Однако для стабильной работы оборудования оды слагать недостаточно. Нужно позаботиться о том, чтобы трудолюбивые «железные помощники» получали питание требующихся им параметров, а способ доставки энергии был надежным и предельно безопасным. Вот для этого и нужен ограничитель перенапряжения – компактный потомок устаревших разрядников.

Служебные обязанности старых и новых разрядников

Теплую симпатию Тютчева к майским грозам вряд ли смогут разделить владельцы электрооборудования. Угодивший в воздушную электролинию меткий грозовой разряд создаст в ней перенапряжение, значение которого достигает порой десятков кВ. Даже если дело не дойдет до десятков, а обойдется единицами, приборам может быть нанесен серьезный ущерб. Ведь преобладающее количество бытовых агрегатов с электронной начинкой устойчиво лишь к 1,5 кВ.

Молниеносно разбегаясь по проводке крутые волны перенапряжения способны вызвать пробой, могут перегреть изоляцию до стадии возгорания. И вовсе необязательно, чтобы разрушительная грозовая «стрела» попала в сеть рядом со строением. За пару микросекунд она преодолевает километровые расстояния. От предсказуемых последствий жильцов многоэтажек обязаны защитить электрики управляющей организации. А вот частники смогут предъявить претензии только Илье Громовержцу.

Это не единственная причина, с целью исключения которой нужна защита от перенапряжения. Аналогичную угрозу представляют:

  • коммутационные скачки, возникающие на подстанции вследствие отключающих/подключающих манипуляций с мощными потребителями;
  • броски перенапряжения, распространяемые другим оборудованием;
  • электростатические разряды, которые периодически появляются между работающими рядом устройствами.

Для того чтобы все перечисленные обстоятельства не влияли ни на работу электротехники, ни на целостность ее изоляции, были изобретены разрядники.

Функция разрядников заключалась в поглощении излишков энергии с последующим сбросом их вместе с выделившимся теплом в почву через . В списке компонентов разрядника значатся только два электрода и дугогасительный элемент. Один из электродов крепился к защищаемому объекту, второй к заземляющему контуру. Т.е. одной «рукой» разрядник ловил перенапряжение, второй – выводил его за пределы. Дугогаситель снимал возникшую в это время ионизацию, чтобы вернуть разрядник в обычное рабочее русло.

Между электродами разрядника нужно было установить четкое расстояние, именуемое искровым промежутком. Чем больше был данный интервал, тем мощнее действовала разрядная система. В результате сооружалось нечто весьма громоздкое и не всегда эффективное, потому что устройство могло внезапно ограничить поток, не успев вернуться в нормальный рабочий режим перед очередным всплеском. Потом были эпопеи с внедрением вентильных, воздушных, газовых и других типов разрядников. Каждый из них мог похвастаться технологическими плюсами, но не был полностью избавлен от недостатков.

Меньше всего технологических минусов у нового поколения разрядников – ограничителей. Ранее они были представлены блокированными устройствами, которые после повреждения приходилось полностью менять. Теперь их выпускают в модульных вариантах, невероятно удобных для защиты электропроводки загородной частной собственности.

Конструкция и специфика модульных ограничителей

Ограничители, применяемые для гашения импульсного перенапряжения, представляют собой компактные аппараты со сменными модульными элементами. Устанавливают приборы в главных и второстепенных распределительных щитках.

Обратите внимание. Использование ограничителей будет иметь смысл только при наличии системы заземления, которая требуется для вывода тепловой энергии от погашенной электромагнитной дуги.

Главный рабочий орган ограничителя – варистор. Это реостат, набранный из плотно состыкованных варисторных таблеток. Делают таблетки из смеси оксида цинка с оксидами висмута, кобальта и других металлов. Преимущество данного органа заключается в нелинейном вольт-амперном «поведении». Т.е. сопротивление устройства уменьшается с увеличением силы тока, благодаря чему:

  • прибор свободно пропускает сверхтоки и компактно гасит их без длиннющего искрового промежутка;
  • срабатывает в предельно краткий срок;
  • почти моментально возвращается к исходному изоляционному состоянию в полной готовности «принять на грудь» очередной импульсный поток.

Варистор расположен в модульной вставке, которую после выхода из строя функциональной начинки можно без мельчайших проблем заменить. Модульные устройства выпускают в широком диапазоне пропускной токовой способности, т.к. ограничители призваны осуществлятьзащиту от разных по мощности скачков напряжения.

Обратите внимание, что в случае применения комплектных ограничителей от одного производителя (например, с маркой ETITEC) допустима их параллельная установка, если требуется увеличить токовую способность. Однако желательно изначально подбирать аппарат с требующимися характеристиками.

Ограничитель в сеть устанавливается навечно. Точнее, на весь срок службы защищаемого им участка проводки. Периодически менять нужно будет лишь сменную вставку, габариты которой рассчитаны на возможность подключения только к прибору с конкретной пропускной токовой способностью. Короче, вставка с иными токовыми характеристиками банально не влезет в «гнездо».

Работа и сигнализация о повреждении

Пока по токоведущим жилам проводки течет ток стандартного рабочего значения, варисторный ограничитель безоговорочно пропускает поток. Напряжение на клеммах его главного рабочего органа равнозначно напряжению в сети. Как только клеммы прибора зафиксируют аномалию, аппарат в считанные наносекунды приступает к обязанностям. А если возникнет напряжение, равное по значению напряжению воспламенения прибора, работу ограничителя прервет термический предохранитель.

По задумке разработчиков «жизненный цикл» ограничителей равен 200 тысячам часов. Однако сократить его могут всплески перенапряжения, значение которых ощутимо превышает номинальные величины. Они способны повредить варисторный орган и сжечь предохранитель, в результате чего устройствопросто вообще не сможет осуществлять защиту от перенапряжения. Естественно, «на ощупь» получить информацию о выходе прибора из строя невозможно. Для этого в сменном модуле заботливые производители предусмотрели сигнальный элемент – контрольное окошко.

Визуальная сигнализация зависит от предпочтений изготовителя. Это может быть затемнение контрольного окна или обнаруженный там же яркий красный свет, как у продукции ETITEC. Кстати в ассортименте упомянутой фирмы есть ограничители со звуковым оповещением. В инструкциях обычно подробно описано, по каким признакам нужно определять предстоящую замену вкладыша.

Обратите внимание, что модульность ограничителей в приоритете не только из-за оперативной замены поврежденного элемента, но и из-за возможности получить верные показания при контрольном измерении сопротивления проводки. Достаточно удалить вкладыши из модульных ограничителей, и на исследуемые значения ничто не будет влиять. С блокированными аппаратами измерения проводить бесполезно, достоверных результатов не будет.

Классификация ограничителей и правила монтажа

Защиту объекта от импульсных напастей сооружают по традиционным правилам селективности. Т.е. на вводе устанавливают наиболее мощный прибор, затем ограничитель с меньшей пропускной токовой способностью, далее – еще меньше и т.д. Для загородных строений вполне приемлем двухступенчатый формат защиты, тратиться на более изощренный вариант не к чему.

Чтобы не купить ограничитель с абсолютно ненужными характеристиками, выясним, по каким принципам классифицирует свой товар глубокоуважаемая нами компания ETITEC:

  • Группа А - ограничители, предназначенные для защиты объекта от сверхтоков, вызванных прямым попаданием грозового разряда в сеть или попаданием в объект, расположенный поблизости от воздушной ЛЭП. Без потери работоспособности они смогут вывести в землю импульсы не более 6кВ. Рабочее сопротивление данных устройств не превышает 10 Ом. Устанавливаются снаружи, чаще всего крепятся в точке перехода воздушной линии в кабельное продолжение. Рекомендовано располагать в зоне заземления нулевого защитного проводника PE или его собрата PEN, по совместительству выполняющего функции нулевого защитного и нулевого рабочего проводников.
  • Группа В – ограничители, защищающие от импульсных всплесков в пределах 4 кВ. Устанавливаются они на вводе в строение, если наружное ограничивающее устройство уже есть. Эта группа чаще всего используются в качестве первой ступени защиты частного дома, т.к. предполагается, что предыдущий вариант обязана поставить обслуживающая ЛЭП компания.
  • Группа С – ограничители, сбрасывающие в заземление все, что пропустила защита В, но не более 2,5 кВ. Причем и применяются они преимущественно в паре, особенно, если сооружается двухступенчатая система. Если в двух ступенях ограничения не было необходимости, то приборы группы С справляются с задачами первой защитной преграды. Монтируются в местах распределения электропроводки, в щитках.
  • Группа D – ограничители, предназначенные для защиты потребителей, особо чувствительных к коротким сверхтокам. Оберегают они оборудование, чья устойчивость изоляции не превышает 1,5 кВ. Обойтись без них можно, если нет техники с электронной начинкой. Однако если между устройством С и защищаемым оборудованием больше 15 м, D очень даже пригодится. Установка в сеть ограничителей D допустима только при наличии более высоких степеней защиты. Чувствительные устройства без затруднений выведет из строя малейшее импульсное колебание.

Согласно описанному ранжиру производится селективная установка ограничителей. В преобладающем количестве случаев используется схема B – C, отлично справляющаяся с гашением и отводом наружу электромагнитного негатива в диапазоне 1,5- 2,5 кВ. Если имеются причины для увеличения количества ступеней, то можно начать сооружение защиты с прибора группы А и завершить устройством D.

Обратите внимание. Между ограничителями В и С марки ETITEC расстояние должно быть 10м и более, чтобы на подступах ко второй ступени защиты перенапряжение успело достичь порогового значения. При отсутствии возможности расположить приборы согласно правилам, можно поставить рядом в щиток, но между аппаратами разместить индукционную катушку от того же производителя. Между С и D катушки не надо, но желательно создать между ними интервал в 5 м.

Жаль, что латинскими литерами обозначаются не все ограничители, но принцип классификации у всех производителей приблизительно одинаков. Аналогична схема установки и использования ограничителей, защищающих от скачков напряжения в электросети, равнозначны правила их подбора. Как ориентироваться без буквенных подсказок?

Ориентиры подбора ограничителей

Перед покупкой надо изучить технический паспорт аппарата, в котором указаны:

  • значение максимального рабочего напряжения, при котором устройство способно длительное время работать без отвода излишка энергии в систему заземления;
  • номинальное напряжение – характеристика, указывающая на то, какое перенапряжение при пуске оборудования может действовать на устройство целых 10 сек., не призывая его к «должностным» обязанностям;
  • величина номинального разрядного тока, согласно которой производится классификация, идентичная вышеуказанному варианту.
  • токовая пропускная способность, обозначающая предел снижения сопротивления ограничителя. Проще говоря, какой величины перенапряжение устройство сможет обрабатывать и сбрасывать без собственной поломки;
  • устойчивость к медленно возрастающему напряжению, которая означает способность устройства пропускать аномальный ток без разрушительных последствий;
  • предельный ток разряда, который может «обработать» устройство;
  • устойчивость к «коротышам», успевшим вывести прибор из строя, но не создавшим условий для взрыва оболочки…

В техпаспорте найдется еще ряд значений, полученных расчетным или экспериментальным путем. Изучать их в полном объеме необязательно, большинство пропечатанных параметров предназначено для рабочих испытаний и для настройки промышленных систем.

Резюмируем полученную информацию

Итак, уверенно направляемся в магазин с целью приобретения весьма полезных приборов защиты и учитываем что:

  • для обеспечения автономного строения, не имеющего наружной грозовой защиты, потребуется трехступенчатое сооружение А – В – С, действие которой будет последовательно ограничивать импульсные волны 6 – 4 – 2,5 кВ;
  • при расстоянии от ограничителя С (2,5 кВ) до приемника энергии больше 10ти метров нужен будет еще и прибор D (1,5кВ);
  • для объекта с существующей защитой от атмосферных и сетевых перенапряжений нужен только тандем В – С (4 - 2,5 кВ).

Хочется верить, что наши советы помогут грамотно выбрать приборы для защиты от всего спектра перенапряжений. А вот установку их желательно поручить «бывалым» электрикам. Без опыта лучше не браться за крайне ответственное дело.

Сейчас в наше время разрядники распространены повсеместно. Поэтому вопросы о разрядниках стали актуальными. Но на большинстве сайтов информация очень сложная и непонятная. Эта статья очень проста в понимании. Из неё вы узнаете: что такое разрядник, принцип работы, устройство и виды разрядников.

В современной электронике довольно часто возникают сильные всплески напряжения. Перенапряжения могут сильно повлиять на электрические устройства, работающие при нормальных условиях, даже если они кратковременны. Причиной этого может стать плохая коммутация электрических цепей, слабая изоляция, резонансные помехи. Причины бывают, как и внутренние, так и внешние. Атмосферные разряды гроз могут стать внешней причиной перенапряжения.

Для предохранения от перенапряжения раньше применялись только громоотводы. Сейчас с высоким развитием современной электроники стали применяться такие замечательные устройства, как разрядники.

Что такое разрядник?

Разрядник- это устройство, которое защищает современную электронику от высоких скачков напряжения.

С высоким развитием промышленности удалось сделать разрядники экономичными и эффективными для использования в своих целях. Сейчас в наше время использование надежной изоляции весьма дорого и неэффективно, удобнее всего, конечно же, использовать разрядники.

В узком смысле разрядники являются защитными элементами электрических цепей, без которых часто бы портились электрические приборы, изоляция ЛЭП кабелей или проводов.

Устройство разрядника

Разрядник состоит из двух основных частей: электродов и дугогасительного устройства.

Устройство разрядника в зависимости от его вида бывает разным.

Разрядник имеет прочный герметичный корпус, который предохраняет его от внешних механических повреждений. Промежуток между электродами называется искровым промежутком. Один из электродов присоединяется к защищаемому элементу электрической цепи, а другой обязательно заземляется. Без заземления разрядник бесполезен.

Важно то, что дугогасительное устройство несёт большее значение в работе разрядника, в ином случае разрядник не сможет предотвратить от фазного пробоя. Фазный пробой повлечет за собой короткое замыкание (КЗ).

На рисунке 2 показано устройство трубчатого разрядника. Он имеет прочный корпус 1, который способен выдержать большую температуру. Фланец 3, к нему присоединяется защищаемый участок электрической цепи, сам фланец является электродом разрядника. Электрод 2 подключается к заземлению. Он бывает двух видов: с регулировкой и без неё. Первый может менять размер искрового промежутка, тем самым изменяет величину пробивного напряжения.

Рис 2. Устройство трубчатого разрядника

Пробивное напряжение – это одна из главных характеристик разрядника, которая показывает напряжение, при котором в разряднике, между его электродами возникает искры, то есть разрядник пробивается. Полярность подключение к электродам 2 и 3 не имеет существенной разницы, если это разрядник переменной сети.

Дугогасительное устройство в данном случае представляет из себя корпус, который выделяет газ. Современные методы производства позволяют создавать разрядники различных характеристик.

Принцип работы разрядника

Принцип работы разрядника довольно прост, как и его устройство. При возникновение перенапряжения на электродах разрядника значительно возрастает напряжение. Если это напряжение станет больше напряжение пробоя, которое прописано в характеристике устройства, то возникнет пробой.

Между электродами проскочит искра. При этом снизится напряжение на его электродах, а в искровом промежутке ионизируется воздух. Разрядник станет пробиваться фазным напряжением и возникнет короткое замыкание.

Чтобы этого не произошло, в разряднике присутствует дугогасительное устройство. В зависимости от вида разрядника имеются различные виды дугогасительных устройств. Все разрядники подразделяются на несколько видов.

Ниже представлены основные виды разрядников.

Виды разрядников:

-Трубчатый (воздушный);
-Газовый;
-Вентильный:
-Магнитовентильный разрядник (РВМГ);
-Ограничитель перенапряжения нелинейный (ОПН);
-Трубчатые разрядники (воздушный)

Трубчатый разрядник

Трубчатый разрядник представляет собой трубку из прочного материала. Сам материал – это различные полимеры. Самый распространённый из них – это полихлорвинил. Полихлорвинил способен вынести температуру, пригодную для данного типа разрядников.

В трубку помещены два электрода (рис 1.). Один присоединяется к защищаемому элементу, а другой заземляется. Принцип работы трубчатого разрядника довольно прост.

При напряжении пробоя образуется искра, которая ионизирует воздух. Воздух сильно нагревается, при этом идет массовое выделение газов.

Интенсивная газовая генерация гасит дугу фазного напряжения. Такое дугогасительное устройство называется продольным дутьём. Для выхода газов наружу, в разряднике имеется отверстие.

Газовый разрядник отличается от воздушного только тем, что его корпус наполняют инертным газом (аргоном или неоном). В отличие от воздушного разрядника, в газовом разряднике дугу, образованную фазным напряжением, гасят инертные газы.

В современной электронике трубчатые разрядники распространены повсеместно. Они просты по устройству и надежны. Пробивное напряжение воздушных разрядников невысокое, поэтому такие разрядники не применяются в более высоковольтной аппаратуре.

Более высокое пробивное напряжение у газовых разрядников. Они гораздо эффективнее, так как газы не вступают в реакции, тем самым продлевают жизнь электродам.

Рис 3. Трубчатый разрядник

Вентильные разрядники.

Вентильный разрядник состоит из набора многократно повторяющихся искровых промежутков и нелинейных сопротивлений.

Принцип работы вентильного разрядника немного другой, чем у трубчатых разрядников. Во время работы электроды искрового промежутка снимают перенапряжения, а нелинейные сопротивления(резисторы) гасят дугу фазного напряжения.

Резисторы состоят из набора вилитовых дисков. Вилит – это запеченная смесь карбида кальция с жидким стеклом. По сравнению с трубчатыми и газовыми разрядниками, вентильные разрядники имеют более высокое напряжение пробоя.

Рис 4. Вентильный разрядник.

Магнитовентильный разрядник (РВМГ)

В отличие от устройства вентильного разрядника, в устройство магнитовентильного разрядника входит набор кольцевых магнитов.

Принцип работы магнитовентильного разрядника немного другой. При пробое фазным напряжением образуются дуга. Под воздействием магнитного поля магнитов дуга начинает вращаться, тем самым дуга гасится.

Рис 5. Магнитовентильный разрядник (РВМГ).

Ограничители перенапряжения нелинейные (ОПН).

Ограничители перенапряжения нелинейные не имеют электродов. Они состоят из набора нелинейных полупроводниковых сопротивлений – варисторов.

Варистор – это полупроводниковый резистор, который меняет сопротивление в зависимости от приложенного к нему напряжения. При возрастании напряжения, сопротивление варистора падает, поэтому он пропускает через себя электрический ток, тем самым снимая напряжение с защищаемого участка электрической цепи.

Варисторы в процессе работы очень сильно нагреваются, поэтому корпуса нелинейных ограничителей перенапряжения делают теплопроводными. Это позволяет отводить тепло.

Сама конструкция ОПН очень проста, поэтому это упрощает методы производства. Также у ОПН неплохие технические характеристики. Количество варисторов можно варьировать в зависимости от нужного пробивного напряжения нелинейного ограничителя перенапряжения.

Рис 6.Ограничитель перенапряжения нелинейный (ОПН).

В заключение хочу скачать, что помимо высоковольтных разрядников, в современной электронике появились низковольтные разрядники.

Это позволяет радиолюбителем широко использовать такие замечательные устройства.

Розрядники. Конструкція, характеристики, принцип дії.

Разря́дник - электрический аппарат, предназначенный для ограничения перенапряжений в электротехнических установках и электрических сетях. Первоначально разрядником называли устройство для защиты от перенапряжений, основанный на технологии искрового промежутка. Затем, с развитием технологий, для ограничения перенапряжений начали применять устройства на основе полупроводников и металл-оксидных варисторов, применительно к которым продолжают употреблять термин "разрядник".

Устройство и принцип действия. Разрядник состоит из двух электродов и дугогасительного устройства. Электроды. Один из электродов крепится на защищаемой цепи, второй электрод заземляется. Пространство между электродами называется искровым промежутком. При определенном значении напряжения между двумя электродами искровой промежуток пробивается, снимая тем самым перенапряжение с защищаемого участка цепи. Одно из основных требований, предъявляемых к разряднику - гарантированная электрическая прочность при промышленной частоте (разрядник не должен пробиваться в нормальном режиме работы сети).

Дугогасительное устройство. После пробоя импульсом искровой промежуток достаточно ионизирован, чтобы пробиться фазным напряжением нормального режима, в связи с чем возникает короткое замыкание и, как следствие, срабатывание устройств РЗиА, защищающих данный участок. Задача дугогасительного устройства - устранить это замыкание в наиболее короткие сроки до срабатывания устройств защиты.

Воздушный разрядник закрытого или открытого типа. Воздушный разрядник представляет собой дугогасительную трубку из полимеров, способных подвергаться термической деструкции с выделением значительного количества газов и без значительного обугливания - полихлорвинила или оргстекла (первоначально, в начале XX века, это была фибра), с разных концов которой закреплены электроды. Один электрод заземляется, а второй располагается на определенном расстоянии от него (расстояние определяет напряжение срабатывания, или пробоя, разрядника) и имеет прямое электрическое подключение к защищаемому проводнику линии. В результате пробоя в трубке возникает интенсивная газогенерация (плазма), и через выхлопное отверстие образуется продольное дутье, достаточное для гашения дуги. В воздушном разряднике открытого типа выброс плазменных газов осуществляется в атмосферу. Напряжение пробоя воздушных разрядников - более 1 килоВольта.

Газовый розрядник. Конструкция и принцип действия идентичны воздушному разряднику. Электрический разряд происходит в закрытом пространстве (керамическая трубка), заполненном инертными газами. Технология электрического разряда в газонаполненной среде позволяет обеспечить более лучшие характеристики скорости срабатывания и гашения разрядника. Напряжение пробоя газонаполненного разрядника - от 60 Вольт до 5 килоВольт.



Вентильный розрядник. Вентильный разрядник РВМК-1150.Вентильный разрядник состоит из двух основных компонентов: многократного искрового промежутка (состоящего из нескольких однократных) и рабочего резистора (состоящего из последовательного набора вилитовых дисков). Многократный искровой промежуток последовательно соединен с рабочим резистором. В связи с тем, что вилит меняет характеристики при увлажнении, рабочий резистор герметично закрывается от внешней среды. Во время перенапряжения многократный искровой промежуток пробивается, задача рабочего резистора - снизить значение сопровождающего тока до величины, которая сможет быть успешно погашена искровыми промежутками. Вилит обладает особенным свойством - его сопротивление нелинейно - оно падает с увеличением значения силы тока. Это свойство позволяет пропустить больший ток при меньшем падении напряжения. Благодаря этому свойству вентильные разрядники и получили свое название. Среди прочих преимуществ вентильных разрядников следует отметить бесшумность срабатывания и отсутствие выбросов газа или пламени.

Магнитовентильный разрядник (РВМГ). РВМГ состоит из нескольких последовательных блоков с магнитным искровым промежутком и соответствующего числа вилитовых дисков. Каждый блок магнитных искровых промежутков представляет собой поочередное соединение единичных искровых промежутков и постоянных магнитов, заключенное в фарфоровый цилиндр.

При пробое в единичных искровых промежутках возникает дуга, которая за счет действия магнитного поля, создаваемого кольцевым магнитом, начинает вращаться с большой скоростью, что обеспечивает более быстрое, по сравнению с вентильными разрядниками, дугогашение.

Различные ОПН. Ограничитель перенапряжений нелинейный (ОПН) - это элемент защиты без искровых промежутков. Активная часть ОПН состоит из легированного металла, при подаче напряжения он ведет себя как множество последовательно соединенных варисторов. Принцип действия ОПН основан на том, что проводимость варисторов нелинейно зависит от приложенного напряжения. При отсутствии перенапряжений ОПН не пропускает ток, но как только на участке сети возникает перенапряжение, сопротивление ОПН резко снижается, чем и обуславливается эффект защиты от перенапряжения. После окончания действия перенапряжения на выводах ОПН, его сопротивление опять возрастает. Переход из «закрытого» в «открытое» состояние занимает единицы наносекунд (в отличие от разрядников с искровыми промежутками, у которых это время срабатывания может достигать единиц микросекунд). Кроме высокой скорости срабатывания ОПН обладает еще рядом преимуществ. Одним из них является стабильность характеристики варисторов после неоднократного срабатывания вплоть до окончания указанного времени эксплуатации, что, кроме прочего, устраняет необходимость в эксплуатационном обслуживании.

Cтержневые искровые промежутки. Cтержневые искровые промежутки также известные как «дугозащитные рога» применяются для защиты от пережога защищеных проводов и перевода однофазного к.з в двухфазное. Для возникновения дуги необходим ток к.з. превышающий 1 кА. Вследствие относительно низкого напряжения (6-10кВ против 20кВ в сетях Финляндии) и высокого сопротивления заземления «дугозащитные рога» в российских сетях не срабатывают.

В настоящее время на ВЛ 6-10 кВ они запрещены «Положением о технической политике» ФСК.

Разрядник длинно-искровой. Принцип работы разрядника основан на использовании эффекта скользящего разряда, который обеспечивает большую длину импульсного перекрытия по поверхности разрядника, и предотвращении за счет этого перехода импульсного перекрытия в силовую дугу тока промышленной частоты. Разрядный элемент РДИ, вдоль которого развивается скользящий разряд, имеет длину, в несколько раз превышающую длину защищаемого изолятора линии. Конструкция разрядника обеспечивает его более низкую импульсную электрическую прочность по сравнению с защищаемой изоляцией. Главной особенностью длинно-искрового разрядника является то, что вследствие большой длины импульсного грозового перекрытии вероятность установления дуги короткого замыкания сводится к нулю.

Существуют различные модификации РДИ, отличающиеся назначением и особенностями ВЛ, на которых они применяются.

РДИ предназначены для защиты воздушных линий электропередачи напряжением 6-10 кВ трехфазного переменного тока с защищёнными и неизолированными проводами от индуктированных грозовых перенапряжений и их последствий и прямого удара молнии; рассчитаны для работы на открытом воздухе при температуре окружающего воздуха от минус 60 °C до плюс 50 °C в течение 30-и лет.

Основное преимущество РДИ: разряд развивается вдоль аппарата по воздуху, а не внутри его. Это позволяет значительно увеличить срок эксплуатации изделий и повышает их надежность.

Назначение разрядников

Газонаполненные разрядники - это приборы с двумя или тремя электродами, предназначенные для защиты электронной аппаратуры от случайных перенапряжений или для формирования мощных электрических импульсов в микро- и наносекундном диапазонах. Основная особенность вольт-амперной характеристики двухэлектродного защитного разрядника - наличие порогового напряжения, ниже которого разрядник выступает как изолятор, а выше - как низкоомный проводник.

Коммутационные разрядники до перехода в проводящее состояние эквивалентны разомкнутому ключу. В режим низкоомного проводника они переходят при увеличении напряжения выше порогового значения или при поступлении импульса напряжения на управляющий электрод (в управляемых разрядниках). Из проводящего состояния в непроводящее защитные и коммутационные разрядники возвращаются только после снижения напряжения между основными электродами до определенного значения.

В проводящем состоянии из-за малого собственного сопротивления разрядники не определяют величину тока. Обычно она ограничена активным (или индуктивным) сопротивлением элементов цепи. Характерные параметры разрядников: пороговое напряжение - от 70 В до 300 кВ, допустимый ток - до 150 кА. Для некоторых типов разрядников (защита цепей, находящихся под сравнительно высоким рабочим напряжением) в качестве параметров указывается напряжение, при котором разрядник возвращается в непроводящее состояние. Характерные значения напряжения - от 50 В до 8 кВ. Важными параметрами коммутирующих разрядников являются максимально допустимая частота следования импульсов (10 - 100 Гц) и срок службы, который характеризуют гарантированным числом коммутаций (106 - 107) или зарядом, коммутируемым за весь период работы (103 - 104 Кл - «суммарный заряд»).

Устройство и принцип действия

Конструкция типичного разрядника представляет собой два плоских дисковых электрода, разделенных диэлектрической вакуумной оболочкой из керамики (рис. 1). Приборы обычно наполняются инертными газами и их смесями до давления от 102 до 106 Па. Характерные значения параметров газоразрядного промежутка: расстояние - до 1 см, площадь - порядка 1 см Минимальные габариты 8,26 мм (диаметр и высота разрядников «кнопочной» конструкции), максимальные - 120220 мм. В проводящее состояние разрядники переходят в результате возникновения газового разряда. В зависимости от назначения прибора разряд может быть тлеющим (на миллиамперный диапазон токов), дуговым (амперы и килоамперы) или искровым (килоамперы).

Рис. 1.

Основные физические процессы в тлеющем разряде: развитие электронных лавин, выход электронов из катода под действием ионов и фотонов, перераспределение потенциала в промежутке за счет ионного пространственного заряда, приводящее к формированию узкой прикатодной области с большой напряженностью поля. Характерные величины напряжения горения разряда - сотни вольт.

В дуговом разряде определяющую роль играет термоэмиссия электронов с поверхности катода, разогретого ионной бомбардировкой. Дуговому разряду в сравнении с тлеющим присущи более низкие значения напряжения горения - десятки вольт. Для разрядников характерна «неустановившаяся форма дугового разряда», при которой до высокой температуры быстро разогревается не весь катод, а лишь его микроучасток, в пределах которого возможны плавление и испарение вещества.

Разряд в таких условиях может развиваться в расширяющемся облаке пара материала катода. Для обеспечения необходимой долговечности разрядников в таких случаях особое внимание уделяется выбору катодного материала. Основные требования к нему - низкая работа выхода электронов и сравнительно малая теплота испарения. Одним из распространенных материалов является алюмосиликат цезия, заполняющий поры прессованной губки из никелевого порошка. В сильноточных (до 150 кА) коммутационных разрядниках катод выполняется в виде медной пленки, нанесенной на подслой молибдена.

Искровой разряд развивается при очень высокой интенсивности размножения электронов в лавине, с существенной генерацией фотонов, способных ионизировать молекулы газа. Разряд формируется в виде «стримеров», визуально наблюдаемых как искры. Развитию стримеров физически соответствует быстрое перемещение фронта ионизированного газа, обусловленное тем, что после ухода на анод части электронов лавины положительный пространственный заряд «втягивает» в основной разрядный канал «дочерние» электронные лавины, зарождающиеся перед фронтом в результате фотоионизации газовых молекул.

Достоинства разрядников: широкий диапазон значений рабочих напряжений и токов, устойчивость к токовым перегрузкам, простота конструкции и технологии изготовления, способность нормально функционировать в условиях радиации и высокой (до 300 оС) температуры окружающей среды. Достоинства определяют широкое применение разрядников: в настоящее время выпускается около 50 типов приборов. Обозначение типов обычно включает букву «Р» и номер разработки, например неуправляемый защитный разрядник Р-150. В обозначении некоторых типов указываются две буквы и номер. Например, РУ-73 - управляемый трехэлектродный разрядник; РО-49 - разрядник обостритель для рентгеновских приборов; РК-160 - коммутирующий разрядник.

Во время переключений или под воздействием грозовых разрядов в электротехническом оборудовании и линиях электропередачи могут возникать импульсы высокого напряжения, в несколько раз превышающие номинальное значение. Поскольку изоляция не рассчитана на такое напряжение, может произойти её пробой, сопровождающийся аварией. Чтобы предотвратить её, применяются электрические устройства (разрядники), защищающие от импульсов перенапряжения.

Устройство разрядника и принцип действия

В любом разряднике есть электроды , расстояние между которыми называется искровым промежутком и устройство гашения дуги. Один электрод подключается к защищаемому оборудованию, а другой заземляется. При увеличении напряжения выше величины, определяемой размером промежутка между электродами, он пробивается, и импульс перенапряжения отводится через заземление.

Основным параметром ограничителей является гарантированная электрическая прочность при номинальном напряжении. Сие означает, что устройство, ни при каких условиях не сработает в штатной ситуации. В момент прохождения импульса включается устройство гашения электрической дуги. Оно должно быстро (в течение полупериода) устранить короткое замыкание, образованное дугой, чтобы не успели сработать устройства защиты от перегрузки.

Каталог производимых устройств позволяет сделать выбор разрядников наиболее полно отвечающим предъявляемым требованиям и предпочтительных по цене.

Воздушные (трубчатые) разрядники изготовляются в виде трубок из полимера, который при нагреве может выделять большое количество газа. На концах трубки закреплены электроды, расстояние между которыми определяет величину напряжения срабатывания. Во время пробоя материал трубки начинает выделять газ, который выходя через отверстие в корпусе, создаёт дутьё, гасящее электрическую дугу. Напряжение срабатывания превышает 1 кВ.

Газовые разновидности конструктивно аналогичны предыдущим моделям. Пробой осуществляется в герметичной трубке из керамики, содержащей инертный газ. Ионизация газа обеспечивает более быстрое срабатывание, а его давление надёжное гашение дуги. Порог срабатывания может быть от 60 вольт до 5 кВ. Для индикации превышения напряжения часто используется неоновая лампочка.

Вентильные устройства состоят из нескольких искровых промежутков, соединяемых последовательно, и сопротивления, составленного из вилитовых дисков (рабочий резистор). Между собой они соединяются последовательно. Поскольку характеристики вилита зависят от влажности, его помещают в герметичную оболочку.

Во время пробоя задачей резистора является понижение тока короткого замыкания до величины, успешно гасимой искровыми промежутками. Так как величина сопротивления вилита нелинейная ― она тем меньше, чем больше ток, то это даёт возможность пропускать значительный ток при малом падении напряжения. К преимуществам данных приборов нужно отнести срабатывание без шумовых и световых эффектов. Эти разрядники википедия характеризует устаревшими и уже не производящимися.

Магнитовентильные модификации собираются из ряда блоков, снабжённых магнитными искровыми промежутками, и равным им количеством дисков из вилита. Единичный блок состоит из ряда последовательно соединённых искровых промежутков и постоянного магнита, помещённых в корпус из фарфора. В момент пробоя возникшая дуга под воздействием магнитного поля образуемого кольцевым магнитом приобретает вращение, поэтому гасится быстрее, чем в вентильных устройствах.

В длинно-искровых устройствах используется явление скользящего разряда, обеспечивающего значительную протяжённость пути импульса по наружной стороне разрядного элемента. По длине разрядный элемент значительно превышает изолятор электролинии, но электрическая прочность его меньше, поэтому возможность возникновение дуги равна нулю. Этот вид используется на 3-ёхфазных линиях электропередачи. Они могут работать при температуре от — 60° C до + 50° C 30 лет.

В ограничителях перенапряжения нелинейных искровые промежутки отсутствуют. Вместо них используются последовательно соединённые окисно-цинковые варисторы . Их сопротивление тем меньше, чем больше сила тока, поэтому отведение импульса перенапряжения происходит очень быстро с моментальным возвратом в исходное положение. Для пропуска больших токов допускается параллельная установка нескольких ограничителей одной марки. Ограничитель устанавливается на весь срок службы защищаемого объекта.

Выбор разрядников

Прежде всего, нужно определиться с классом прибора:

В соответствии с указанным ранжиром создаются схемы селективной защиты. Самой популярной является схема B ― C , которая надёжно защищает от перенапряжения 1,5 ― 2,5 кВ. Для защиты дорогостоящей электронной аппаратуры сооружается защита от A до D включительно.

Выбор по параметрам

Выбирать конкретное защитное устройство , работающее на разрядниках или варисторах, нужно по следующим параметрам:

Остальные значения, указанные в техническом паспорте нужны для проведения испытаний и наладки систем защиты на промышленных предприятиях. Поскольку создание системы защиты от перенапряжения дело ответственное, то если нет опыта лучше монтаж разрядников и заземления поручить специалистам.