Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Tl494 внутренняя схема. Импульсный лабораторный блок питания на TL494. Все даташиты, можно каждый скачать

Tl494 внутренняя схема. Импульсный лабораторный блок питания на TL494. Все даташиты, можно каждый скачать

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.
Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.


В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.
Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.
Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.
Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ.
Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер)
Сетевой предохранитель 25-30 Ампер.
Транзисторы - IRFP460 , старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.
Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.
Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Генератор построен на TL494 , настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.
Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45витковв.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).
Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Устранение неполадок начальной схемы.
Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.
Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.
R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.
Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н» Москва 1995 скачанной в электронном виде из интернета

УПРАВЛЯЮЩАЯ МИКРОСХЕМА TL494

В современных ИБП для формирования управляющего напряжения переключения мощных транзисторов преобразователя обычно используются специализированные интегральные микросхемы (ИМС).
Идеальная управляющая ИМС для обеспечения нормальной работы ИБП в режиме ШИМ должна удовлетворять большинству из перечисленных ниже условий:
рабочее напряжение не выше 40В;
наличие высокостабильного термостабилизи-рованного источника опорного напряжения;
наличие генератора пилообразного напряже-
обеспечение возможности синхронизации внешним сигналом программируемого плавного запуска;
наличие усилителя сигнала рассогласования с высоким синфазным напряжением;
наличие ШИМ-компаратора;
наличие импульсного управляемого триггера;
наличие двухканального предоконечного каскада с защитой от КЗ;
наличие логики подавления двойного импульса;
наличие средств коррекции симметрии выходных напряжений;
наличие токоограничения в широком диапазоне синфазных напряжений, а также токоограничения в каждом периоде с отключением в аварийном режиме;
наличие автоматического управления с прямой передачей;
обеспечение отключения при понижении напряжения питания;
обеспечение защиты от перенапряжений;
обеспечение совместимости с ТТЛ/КМОП логикой;
обеспечение дистанционного включения и отключения.

Рисунок 11. Управляющая микросхема TL494 и ее цоколевка.

В качестве схемы управления для рассматриваемого класса ИБП в подавляющем большинстве случаев используется микросхема типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США) (рис.11). Она реализует большинство из перечисленных выше функций и выпускается рядом зарубежных фирм под разными наименованиями. Например, фирма SHARP (Япония) выпускает микросхему IR3M02, фирма FAIRCHILD (США) - UA494, фирма SAMSUNG (Корея) - КА7500, фирма FUJITSU (Япония) - МВ3759 и т.д. Все эти микросхемы являются полными аналогами отечественной микросхемы КР1114ЕУ4. Рассмотрим подробно устройство и работу этой управляющей микросхемы. Она специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.12):


Рисунок 12. Функциональная схема ИМС TL494

Генератор пилообразного напряжения DA6; частота ГПН определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и в рассматриваемом классе БП выбирается равной примерно 60 кГц;
источник опорного стабилизированного напряжения DA5 (Uref=+5,OB) с внешним выходом (вывод 14);
компаратор "мертвой зоны" DA1;
компаратор ШИМ DA2;
усилитель ошибки по напряжению DA3;
усилитель ошибки по сигналу ограничения тока DA4;
два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;
динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;
вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);
источник постоянного напряжения с номиналом 0,1BDA7;
источник постоянного тока с номиналом 0,7мА DA8.
Схема управления будет запускаться, т.е. на 8 и 11 выводах появятся последовательности импульсов в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В. Всю совокупность функциональных узлов, входящих в состав ИМС TL494, можно условно разбить на цифровую и аналоговую часть (цифровой и аналоговый тракты прохождения сигналов). К аналоговой части относятся усилители ошибок DA3, DA4, компараторы DA1, DA2, генератор пилообразного напряжения DA6, а также вспомогательные источники DA5, DA7, DA8. Все остальные элементы, в том числе и выходные транзисторы, образуют цифровую часть (цифровой тракт).

Рисунок 13. Работа ИМС TL494 в номинальном режиме: U3, U4, U5 - напряжения на выводах 3, 4, 5.

Рассмотрим в начале работу цифрового тракта. Временные диаграммы, поясняющие работу микросхемы, приведены на рис. 13. Из временных диаграмм видно, что моменты появления выходных управляющих импульсов микросхемы, а также их длительность (диаграммы 12 и 13) определяются состоянием выхода логического элемента DD1 (диаграмма 5). Остальная "логика" выполняет лишь вспомогательную функцию разделения выходных импульсов DD1 на два канала. При этом длительность выходных импульсов микросхемы определяется длительностью открытого состояния ее выходных транзисторов VT1, VT2. Так как оба эти транзистора имеют открытые коллекторы и эмиттеры, то возможно двоякое их подключение. При включении по схеме с общим эмиттером выходные импульсы снимаются с внешних коллекторных нагрузок транзисторов (с выводов 8 и 11 микросхемы), а сами импульсы направлены выбросами вниз от положительного уровня (передние фронты импульсов отрицательны). Эмиттеры транзисторов (выводы 9 и 10 микросхемы) в этом случае, как правило, заземляются. При включении по схеме с общим коллектором внешние нагрузки подключаются к эмиттерам транзисторов и выходные импульсы, направленные в этом случае выбросами вверх (передние фронты импульсов положительны), снимаются с эмиттеров транзисторов VT1, VT2. Коллекторы этих транзисторов подключаются к шине питания управляющей микросхемы (Upom).
Выходные импульсы остальных функциональных узлов, входящих в состав цифровой части микросхемы TL494, направлены выбросами вверх, независимо от схемы включения микросхемы.
Триггер DD2 является двухтактным динамическим D-триггером. Принцип его работы заключается в следующем. По переднему (положительному) фронту выходного импульса элемента DD1 состояние входа D триггера DD2 записывается во внутренний регистр. Физически это означает, что переключается первый из двух триггеров, входя щих в состав DD2. Когда импульс на выходе элемента DD1 заканчивается, то по заднему (отрицательному) фронту этого импульса переключается второй триггер в составе DD2, и состояние выходов DD2 меняется (на выходе Q появляется информация, считанная со входа D). Это исключает возможность появления отпирающего импульса на базе каждого из транзисторов VT1, VT2 дважды в течение одного периода. Действительно, пока уровень импульса на входе С триггера DD2 не изменился, состояние его выходов не изменится. Поэтому импульс передается на выход микросхемы по одному из каналов, например верхнему (DD3, DD5, VT1). Когда импульс на входе С заканчивается, триггер DD2 переключается, запирает верхний и отпирает нижний канал (DD4, DD6, VT2). Поэтому следующий импульс, поступающий на вход С и входы DD5, DD6 будет передаваться на выход микросхемы по нижнему каналу. Таким образом каждый из выходных импульсов элемента DD1 своим отрицательным фронтом переключает триггер DD2 и этим меняет канал прохождения следующего импульса. Поэтому в справочном материале на управляющую микросхему указывается, что архитектура микросхемы обеспечивает подавление двойного импульса, т.е. исключает появление двух отпирающих импульсов на базе одного и того же транзистора за период.
Рассмотрим подробно один период работы цифрового тракта микросхемы.
Появление отпирающего импульса на базе выходного транзистора верхнего (VT1) либо нижнего (VT2) канала определяется логикой работы элементов DD5, DD6 ("2ИЛИ-НЕ") и состоянием элементов DD3, DD4 ("2-И"), которое, в свою очередь, определяется состоянием триггера DD2.
Логика работы элемента 2-ИЛИ-НЕ, как известно, заключается в том, что на выходе такого элемента появляется напряжение высокого уровня (логическая 1) в том лишь единственном случае, если на обоих его входах присутствуют низкие уровни напряжений (логические 0). При остальных возможных комбинациях входных сигналов на выходе элемента 2 ИЛИ-НЕ присутствует низкий уровень напряжения (логический 0). Поэтому если на выходе Q триггера DD2 присутствует логическая 1 (момент ti диаграммы 5 рис.13), а на выходе /Q - логический 0, то на обоих входах элемента DD3 (2И) окажутся логические 1 и, следовательно, логическая 1 появится на выходе DD3, а значит и на одном из входов элемента DD5 (2ИЛИ-НЕ) верхнего канала. Следовательно, независимо от уровня сигнала, поступающего на второй вход этого элемента с выхода элемента DD1, состоянием выхода DD5 будет логический О, и транзистор VT1 останется в закрытом состоянии. Состоянием же выхода элемента DD4 будет логический 0, т.к. логический 0 присутствует на одном из входов DD4, поступая туда с выхода /Q триггера DD2. Логический 0 с выхода элемента DD4 поступает на один из входов элемента DD6 и обеспечивает возможность прохождения импульса через нижний канал. Этот импульс положительной полярности (логическая 1) появится на выходе DD6, а значит и на базе VT2 на время паузы между выходными импульсами элемента DD1 (т.е. на время, когда на выходе DD1 присутствует логический 0 - интервал trt2 диаграммы 5 рис.13). Поэтому транзисгор VT2 открывается и на его коллекторе появляется импульс выбросом вниз от положительного уровня (в случае включения по схеме с общим эмиттером).
Начало следующего выходного импульса элемента DD1 (момент t2 диаграммы 5 рис.13) не изменит состояния элементов цифрового тракта микросхемы, за исключением элемента DD6, на выходе которого появится логический 0, и поэтому транзистор VT2 закроется. Завершение выходного импульса DD1 (момент ta) обусловит изменение состояния выходов триггера DD2 на противоположное (логический 0 - на выходе Q, логическая 1 - на выходе /Q). Поэтому поменяется состояние выходов элементов DD3, DD4 (на выходе DD3 - логический 0, на выходе DD4 - логическая 1). Начавшаяся в момент!3 пауза на выходе элемента DD1 обусловит возможность открывания транзистора VT1 верхнего канала. Логический 0 на выходе элемента DD3 "подтвердит" эту возможность, превращая ее в реальное появление отпирающего импульса на базе транзистора VT1. Этот импульс длится до момента U, после чего VT1 закрывается, и процессы повторяются.
Таким образом основная идея работы цифрового тракта микросхемы заключается в том, что длительность выходного импульса на выводах 8 и 11 (либо на выводах 9 и 10) определяется длительностью паузы между выходными импульсами элемента DD1. Элементы DD3, DD4 определяют канал прохождения импульса по сигналу низкого уровня, появление которого чередуется на выходах Q и /Q триггера DD2, управляемого тем же элементом DD1. Элементы DD5, DD6 представляют собой схемы совпадения по низкому уровню.
Для полноты описания функциональных возможностей микросхемы следует отметить еще одну важную ее особенность. Как видно из функциональной схемы рисунке входы элементов DD3, DD4 объединены и выведены на вывод 13 микросхемы. Поэтому если на вывод 13 подана логическая 1, то элементы DD3, DD4 будут работать как повторители информации с выходов Q и /Q триггера DD2. При этом элементы DD5, DD6 и транзисторы VT1, VT2 будут переключаться со сдвигом по фазе на половину периода, обеспечивая работу силовой части ИБП, построенной по двухтактной полумостовой схеме. Если на вывод 13 будет подан логический 0, то элементы DD3, DD4 будут заблокированы, т.е. состояние выходов этих элементов не будет изменяться (постоянный логический 0). Поэтому выходные импульсы элемента DD1 будут воздействовать на элементы DD5, DD6 одинаково. Элементы DD5, DD6, а значит и выходные транзисторы VT1, VT2, будут переключаться без сдвига по фазе (одновременно). Такой режим работы управляющей микросхемы используется в случае, если силовая часть ИБП выполнена по однотактной схеме. Коллекторы и эмиттеры обоих выходных транзисторов микросхемы в этом случае объединяются с целью умощнения.
В качестве "жесткой" логической единицы в двухтактных схемах используется выходное напряжение
внутреннего источника микросхемы Uref (вывод 13 микросхемы объединяется с выводом 14).
Теперь рассмотрим работу аналогового тракта микросхемы.
Состояние выхода DD1 определяется выходным сигналом компаратора ШИМ DA2 (диаграмма 4), поступающим на один из входов DD1. Выходной сигнал компаратора DA1 (диаграмма 2), поступающий на второй вход DD1, не влияет в нормальном режиме работы на состояние выхода DD1, которое определяется более широкими выходными импульсами ШИМ - компаратора DA2.
Кроме того, из диаграмм рис.13 видно, что при изменениях уровня напряжения на неинвертирующем входе ШИМ компаратора (диаграмма 3) ширина выходных импульсов микросхемы (диаграммы 12, 13) будет пропорционально изменяться. В нормальном режиме работы уровень напряжения на неинвертирующем входе компаратора ШИМ DA2 определяется только выходным напряжением усилителя ошибки DA3 (т.к. оно превышает выходное напряжение усилителя DA4), которое зависит от уровня сигнала обратной связи на его неинвертирующем входе (вывод 1 микросхемы). Поэтому при подаче сигнала обратной связи на вывод 1 микросхемы ширина выходных управляющих импульсов будет изменяться пропорционально изменению уровня этого сигнала обратной связи, который, в свою очередь, изменяется пропорционально изменениям уровня выходного напряжения ИБП, т.к. обратная связь заводится именно оттуда.
Промежутки времени между выходными импульсами на выводах 8 и 11 микросхемы, когда оба выходных транзистора VT1 и VT2 ее закрыты, называются "мертвыми зонами".
Компаратор DA1 называется компаратором "мертвой зоны", т.к. он определяет минимально возможную ее длительность. Поясним это подробнее.
Из временных диаграмм рис.13 следует, что если ширина выходных импульсов ШИМ-компа-ратора DA2 будет в силу каких-либо причин уменьшаться, то начиная с некоторой ширины этих импульсов выходные импульсы компаратора DA1 станут шире выходных импульсов ШИМ-компаратора DA2 и начнут определять состояние выхода логического элемента DD1, а значит и. ширину выходных импульсов микросхемы. Другими словами, компаратор DA1 ограничивает ширину выходных импульсов микросхемы на некотором максимальном уровне. Уровень ограничения определяется потенциалом на неинвенти-рующем входе компаратора DA1 (вывод 4 микросхемы) в установившемся режиме. Однако, с другой стороны, потенциал на выводе 4 будет определять диапазон широтной регулировки выходных импульсов микросхемы. При увеличении потенциала на выводе 4 этот диапазон сужается. Самый широкий диапазон регулировки получается тогда, когда потенциал на выводе 4 равен 0.
Однако в этом случае появляется опасность, связанная с тем, что ширина "мертвой зоны" может стать равной 0 (например, в случае значительного возрастания потребляемого от ИБП тока). Это означает, что управляющие импульсы на выводах 8 и 11 микросхемы будут следовать непосредственно друг за другом. Поэтому может возникнуть ситуация, известная под названием "пробой по стойке". Она объясняется инерционностью силовых транзисторов инвертора, которые не могут открываться и закрываться мгновенно. Поэтому, если одновременно на базу открытого до этого транзистора подать запирающий сигнал, а на базу закрытого транзистора - отпирающий (т.е. с нулевой "мертвой зоной"), то получится ситуация, когда один транзистор еще не закрылся, а другой уже открыт. Тогда и возникает пробой по транзисторной стойке полумоста, который заключается в протекании сквозного тока через оба транзистора. Ток этот, как видно из схемы рис. 5, минует первичную обмотку силового трансформатора и практически ничем не ограничен. Защита по току в этом случае не работает, т.к. ток не протекает через токовый датчик (на схеме не показан; конструкция и принцип действия применяемых токовых датчиков будут подробно рассмотрены в последующих разделах), а значит, этот датчик не может выдать сигнал на схему управления. Поэтому сквозной ток достигает очень большой величины за очень короткий промежуток времени. Это приводит к резкому возрастанию выделяющейся на обоих силовых транзисторах мощности и практически мгновенному выходу их из строя (как правило, пробой). Кроме того, броском сквозного тока могут быть выведены из строя диоды силового выпрямительного моста. Процесс этот заканчивается перегоранием сетевого предохранителя, который из-за своей инерционности не успевает защитить элементы схемы, а лишь защищает от перегрузки первичную сеть.
Поэтому управляющее напряжение; подаваемое на базы силовых транзисторов должно быть сформировано таким образом, чтобы сначала надежно закрывался бы один из этих транзисторов, а уже потом открывался бы другой. Другими словами, между управляющими импульсами, подаваемыми на базы силовых транзисторов обязательно должен быть временной сдвиг, не равный нулю ("мертвая зона"). Минимальная допустимая длительность "мертвой зоны" определяется инерционностью применяемых в качестве силовых ключей транзисторов.
Архитектура микросхемы позволяет регулировать величину минимальной длительности "мертвой зоны" с помощью потенциала на выводе 4 микросхемы. Потенциал этот задается с помощью внешнего делителя, подключаемого к шине выходного напряжения внутреннего опорного источника микросхемы Uref.
В некоторых вариантах ИБП такой делитель отсутствует. Это означает, что после завершения процесса плавного пуска (см. ниже) потенциал на выводе 4 микросхемы становится равным 0. В этих случаях минимально возможная длительность "мертвой зоны" все же не станет равной 0, а будет определяться внутренним источником напряжения DA7 (0,1В), который подключен к неинвертирующему входу компаратора DA1 своим положительным полюсом, и к выводу 4 микросхемы - отрицательным. Таким образом, благодаря включению этого источника ширина выходного импульса компаратора DA1, а значит и ширина "мертвой зоны", ни при каких условиях не может стать равной 0, а значит "пробой по стойке" будет принципиально невозможен. Другими словами, в архитектуру микросхемы заложено ограничение максимальной длительности ее выходного импульса (минимальной длительности "мертвой зоны"). Если имеется делитель, подключенный к выводу 4 микросхемы, то после плавного пуска потенциал этого вывода не равен 0, поэтому ширина выходных импульсов компаратора DA1 определяется не только внутренним источником DA7, но и остаточным (после завершения процесса плавного запуска) потенциалом на выводе 4. Однако при этом, как было сказано выше, сужается динамический диапазон широтной регулировки ШИМ компаратора DA2.

СХЕМА ПУСКА

Схема пуска предназначена для получения напряжения, которым можно было бы запитать управляющую микросхему с целью ее запуска после включения ИВП в питающую сеть. Поэтому под пуском подразумевается запуск в работу в первую очередь управляющей микросхемы, без нормального функционирования которой невозможна работа силовой части и всей схемы ИБП в целом.
Схема пуска может быть построена двумя различными способами:
с самовозбуждением;
с принудительным возбуждением.
Схема с самовозбуждением используется, например, в ИБП GT-150W (рис.14). Выпрямленное напряжение сети Uep подается на резистивный делитель R5, R3, R6, R4, являющийся базовым для обоих силовых ключевых транзисторов Q1, Q2. Поэтому через транзисторы под воздействием суммарного напряжения на конденсаторах С5, С6 (Uep) начинает протекать базовый ток по цепи (+)С5 - R5 - R7 - 6-э Q1 - R6 - R8 - 6-э Q2 - "общий провод"первичной стороны - (-)С6.
Оба транзистора приоткрываются этим током. В результате через участки кол лектор-эмиттер обоих транзисторов начинают протекать токи взаимно противоположных направлений по цепям:
через Q1: (+)С5 - шина +310 В - к-э Q1 - 5-6 Т1 -1-2 Т2-С9- (-)С5.
через Q2: (+)С6 - С9 - 2-1 Т2 - 6-5 Т1 - к-э Q2 -"общий провод"первичной стороны - (-)С6.


Рисунок 14. Схема запуска с самовозбуждением ИБП GT-150W.

Если бы оба тока, протекающие через дополнительные (пусковые) витки 5-6 Т1 в противоположных направлениях, были бы равны, то результирующий ток был бы равен 0, и схема не смогла бы запуститься.
Однако в силу технологического разброса коэффициентов усиления по току транзисторов Q1, Q2 всегда какой-либо один из этих токов больше другого, т.к. транзисторы приоткрыты в разной степени. Поэтому результирующий ток через витки 5-6 Т1 не равен 0 и имеет то или иное направление. Допустим, что преобладает ток через транзистор Q1 (то есть Q1 приоткрыт в большей степени, чем Q2) и, следовательно, ток протекает в направлении от вывода 5 к выводу 6 Т1. Дальнейшие рассуждения основываются на этом допущении.
Однако, справедливости ради нужно отметить, что преобладающим может оказаться и ток через транзистор Q2, и тогда все далее описываемые процессы будут относиться к транзистору Q2.
Протекание тока через витки 5-6 Т1 вызывает появление ЭДС взаимоиндукции на всех обмотках управляющего трансформатора Т1. При этом (+)ЭДС возникает на выводе 4 относительно вывода 5 и в базу Q1 под воздействием этой ЭДС течет дополнительно приоткрывающий его ток по цепи: 4 Т1 - D7-R9-R7-6-3 Q1 - 5 Т1.
Одновременно на выводе 7 Т1 появляется (-) ЭДС относительно вывода 8, т.е. полярность этой ЭДС оказывается запирающей для Q2 и он закрывается. Далее вступает в действие положительная обратная связь (ПОС). Действие ее заключается в том, что при возрастании тока через участок коллектор-эмиттер Q1 и витки 5-6 Т1 на обмотке 4-5 Т1 действует возрастающая ЭДС, которая, создавая дополнительный базовый ток для Q1, еще в большей степени приоткрывает его. Процесс этот развивается лавинообразно (очень быстро) и приводит к полному открыванию Q1 и запиранию Q2. Через открытый Q1 и первичную обмотку 1-2 силового импульсного трансформатора Т2 начинает протекать линейно нарастающий ток, что вызывает появление импульса ЭДС взаимоиндукции на всех обмотках Т2. Импульс с обмотки 7-5 Т2 заряжает накопительную емкость С22. На С22 появляется напряжение, которое подается в качестве питающего на вывод 12 управляющей микросхемы IC1 типа TL494 и на согласующий каскад. Микросхема запускается и генерирует на своих выводах 11, 8 прямоугольные последовательности импульсов, которыми через согласующий каскад (Q3, Q4, Т1) начинают переключаться силовые ключи Q1, Q2. На всех обмотках силового трансформатора Т2 появляются импульсные ЭДС номинального уровня. При этом ЭДС с обмоток 3-5 и 7-5 постоянно подпитывают С22, поддерживая на нем неизменный уровень напряжения (около +27В). Другими словами, микросхема по кольцу обратной связи начинает запи-тывать сама себя (самоподпитка). Блок выходит на рабочий режим. Напряжение питания микросхемы и согласующего каскада является вспомогательным, действует только внутри блока и обычно называется Upom.
Эта схема может иметь некоторые разновидности, как например в импульсном блоке питания LPS-02-150XT (производство Тайвань) для компьютера Мазовия СМ1914 (рис.15). В этой схеме начальный толчок для развития процесса запуска получается с помощью отдельного однополупериодного выпрямителя D1, С7, который запитывает в первый положительный полупериод сети базовый для силовых ключей резистивный делитель. Это ускоряет процесс запуска, т.к. первоначальное отпирание одного из ключей происходит параллельно с зарядкой сглаживающих конденсаторов большой емкости. В остальном схема работает аналогично рассмотренной выше.


Рисунок 15. Схема запуска с самовозбуждением в импульсном блоке питания LPS-02-150XT

Такая схема используется, например, в ИБП PS-200B фирмы LING YIN GROUP (Тайвань).
Первичная обмотка специального пускового трансформатора Т1 включается на половинное напряжение сети (при номинале 220В) либо на полное (при номинале 110В). Это делается из тех соображений, чтобы амплитуда переменного напряжения на вторичной обмотке Т1 не зависела бы от номинала питающей сети. Через первичную обмотку Т1 при включении ИБП в сеть протекает переменный ток. На вторичной обмотке 3-4 Т1 поэтому наводится переменная синусоидальная ЭДС с частотой питающей сети. Ток, протекающий под воздействием этой ЭДС, выпрямляется специальной мостовой схемой на диодах D3-D6 и сглаживается конденсатором С26. На С26 выделяется постоянное напряжение около 10-11В, которое подается в качестве питающего на вывод 12 управляющей микросхемы U1 типа TL494 и на согласующий каскад. Параллельно с этим процессом происходит заряд конденсаторов сглаживающего фильтра. Поэтому к моменту подачи питания на микросхему силовой каскад также оказывается запитанным. Микросхема запускается и начинает генерировать на своих выводах 8, 11 последовательности прямоугольных импульсов, которыми через согласующий каскад начинают переключаться силовые ключи. В результате появляются выходные напряжения блока. После выхода на режим самоподпитка микросхемы производится с шины выходного напряжения +12В через развязывающий диод D8. Так как это напряжение самоподпитки немного превышает выходное напряжение выпрямителя D3-D5, то диоды этого пускового выпрямителя запираются, и он в дальнейшем не влияет на работу схемы.
Необходимость обратной связи через диод D8 не является обязательной. В схемах некоторых ИБП, где применяется принудительное возбуждение, такая связь отсутствует. Управляющая микросхема и согласующий каскад в течение всего времени работы запитываются с выхода пускового выпрямителя. Однако уровень пульсации на шине Upom в этом случае получается несколько большим, чем в случае питания микросхемы с шины выходного напряжения +12В.
Подводя итог описания схем запуска, можно отметить основные особенности их построения. В схеме с самовозбуждением производится первоначальное переключение силовых транзисторов, результатом чего является появление напряжения питания микросхемы Upom. В схеме с принудительным возбуждением сначала получают Upom, а уже как результат - переключение силовых транзисторов. Кроме того, в схемах с самовозбуждением напряжение Upom обычно имеет уровень около +26В, а в схемах с принудительным возбуждением - около +12В.
Схема с принудительным возбуждением (с отдельным трансформатором) приведена на рис.16.


Рисунок 16. Схема запуска с принудительным возбуждением импульсного блока питания PS-200B (LING YIN GROUP).

СОГЛАСУЮЩИЙ КАСКАД

Для согласования и развязки мощного выходного каскада от маломощных цепей управления служит согласующий каскад.
Практические схемы построения согласующего каскада в различных ИБП можно разделить на два основных варианта:
транзисторный вариант, где в качестве ключей используются внешние транзисторы в дискретном исполнении;
бестранзисторный вариант, где в качестве ключей используются выходные транзисторы самой управляющей микросхемы VT1, VT2 (в интегральном исполнении).
Кроме того, еще одним признаком, по которому можно классифицировать согласующие каскады, является способ управления силовыми транзисторами полумостового инвертора. По этому признаку все согласующие каскады можно разделить на:
каскады с общим управлением, где управление обоими силовыми транзисторами производится с помощью одного общего для них управляющего трансформатора, который имеет одну первичную и две вторичные обмотки;
каскады с раздельным управлением, где управление каждым из силовых транзисторов производится с помощью отдельного трансформатора, т.е. в согласующем каскаде имеется два управляющих трансформатора.
Исходя из обеих классификаций согласующий каскад может быть выполнен одним из четырех способов:
транзисторный с общим управлением;
транзисторный с раздельным управлением;
бестранзисторный с общим управлением;
бестранзисторный с раздельным управлением.
Транзисторные каскады с раздельным управлением применяются редко, либо вообще не применяются. Авторам не довелось столкнуться с таким вариантом исполнения согласующего каскада. Остальные три варианта встречаются более или менее часто.
Во всех вариантах связь с силовым каскадом осуществляется трансформаторным способом.
При этом трансформатор выполняет две основные функции: усиления управляющего сигнала по току (за счет ослабления по напряжению) и гальванической развязки. Гальваническая развязка необходима потому, что управляющая микросхема и согласующий каскад находятся на вторичной стороне, а силовой каскад - на первичной стороне ИБП.
Рассмотрим работу каждого из упомянутых вариантов согласующего каскада на конкретных примерах.
В транзисторной схеме с общим управлением в качестве согласующего каскада используется двухтактный трансформаторный предварительный усилитель мощности на транзисторах Q3 и Q4 (рис.17).


Рисунок 17. Согласующий каскад импульсного блока питания KYP-150W (транзисторная схема с общим управлением).


Рисунок 18. Реальная форма импульсов на коллекторах

Токи через диоды D7 и D9, протекающие под воздействием магнитной энергии, запасенной в сердечнике DT, имеют вид спадающей экспоненты. В сердечнике DT во время протекания токов через диоды D7 и D9 действует изменяющийся (спадающий) магнитный поток, что и обуславливает появление импульсов ЭДС на его вторичных обмотках.
Диод D8 устраняет влияние согласующего каскада на управляющую микросхему через общую шину питания.
Другая разновидность транзисторного согласующего каскада с общим управлением используется в импульсном блоке питания ESAN ESP-1003R (рис.19). Первой особенностью этого варианта является то, что выходные транзисторы VT1, VT2 микросхемы включены как эмиттерные повторители. Выходные сигналы снимаются с выводов 9, 10 микросхемы. Резисторы R17, R16 и R15, R14 являются эмиттер-ными нагрузками транзисторов VT1 и VT2 соответственно. Эти же резисторы образуют базовые делители для транзисторов Q3, Q4, которые работают в ключевом режиме. Емкости С13 и С12 являются форсирующими и способствуют ускорению процессов переключения транзисторов Q3, Q4. Второй характерной особенностью этого каскада является то, что первичная обмотка управляющего трансформатора DT не имеет вывода от средней точки и подключена между коллекторами транзисторов Q3, Q4. Когда выходной транзистор VT1 управляющей микросхемы открывается, то оказывается запитан напряжением Upom базовый для транзистора Q3 делитель R17, R16. Поэтому через управляющий переход Q3 протекает ток, и он открывается. Ускорению этого процесса способствует форсирующая емкость С13, которая обеспечивает подачу в базу Q3 отпирающего тока, в 2-2,5 раза превышающего установившееся значение. Результатом открывания Q3 является то, что первичная обмотка 1-2 DT своим выводом 1 оказывается подключена к корпусу. Так как второй транзистор Q4 заперт, то через первичную обмотку DT начинает протекать нарастающий ток по цепи: Upom - R11 - 2-1 DT - к-э Q3 - корпус.


Рисунок 19. Согласующий каскад импульсного блока питания ESP-1003R ESAN ELECTRONIC CO., LTD (транзисторная схема с общим управлением).

На вторичных обмотках 3-4 и 5-6 DT появляются импульсы ЭДС прямоугольной формы. Направление намотки вторичных обмоток DT разное. Поэтому один из силовых транзисторов (на схеме не показано) получит открывающий базовый импульс, а другой - закрывающий. Когда VT1 управляющей микросхемы резко закрывается, то вслед за ним также резко закрывается и Q3. Ускорению процесса закрывания способствует форсирующая емкость С13, напряжение с которой прикладывается к переходу база-эмиттер Q3 в закрывающей полярности. Далее длится "мертвая зона", когда оба выходных транзистора микросхемы закрыты. Далее открывается выходной транзистор VT2, а значит оказывается запитанным напряжением Upom базовый для второго транзистора Q4 делитель R15, R14. Поэтому Q4 открывается и первичная обмотка 1-2 DT оказывается подключена к корпусу другим своим концом (выводом 2), поэтому через нее начинает протекать нарастающий ток противоположного предыдущему случаю направления по цепи: Upom -R10- 1-2 DT - к-э Q4 - "корпус".
Поэтому полярность импульсов на вторичных обмотках DT меняется, и открывающий импульс получит второй силовой транзистор, а на базе первого будет действовать импульс закрывающей полярности. Когда VT2 управляющей микросхемы резко закрывается, то вслед за ним также резко закрывается Q4 (с помощью форсирующей емкости С12). Далее опять длится "мертвая зона", после чего процессы повторяются.
Таким образом, основная идея, заложенная в работу этого каскада, заключается в том, что переменный магнитный поток в сердечнике DT удается получить благодаря тому, что первичная обмотка DT подключается к корпусу то одним, то другим своим концом. Поэтому через нее протекает переменный ток без постоянной составляющей при однополярном питании.
В бестранзисторных вариантах согласующих каскадов ИБП в качестве транзисторов согласующего каскада, как это было отмечено ранее, используются выходные транзисторы VT1, VT2 управляющей микросхемы. В этом случае дискретные транзисторы согласующего каскада отсутствуют.
Бестранзисторная схема с общим управлением используется, например, в схеме ИБП PS-200В. Выходные транзисторы микросхемы VT1, VT2 нагружаются по коллекторам первичными полуобмотками трансформатора DT (рис.20). Питание подается в среднюю точку первичной обмотки DT.


Рисунок 20. Согласующий каскад импульсного блока питания PS-200B (бестранзисторная схема с общим управлением).

Когда открывается транзистор VT1, то нарастающий ток протекает через этот транзистор и полуобмотку 1-2 управляющего трансформатора DT. На вторичных обмотках DT появляются управляющие импульсы, имеющие такую полярность, что один из силовых транзисторов инвертора открывается, а другой закрывается. По окончании импульса VT1 резко закрывается, ток через полуобмотку 1-2 DT перестает протекать, поэтому исчезает ЭДС на вторичных обмотках DT, что приводит к закрыванию силовых транзисторов. Далее длится "мертвая зона", когда оба выходных транзистора VT1, VT2 микросхемы закрыты, и ток через первичную обмотку DT не протекает. Далее открывается транзистор VT2, и ток, нарастая во времени, протекает через этот транзистор и полуобмотку 2-3 DT. Магнитный поток, создаваемый этим током в сердечнике DT, имеет противоположное предыдущему случаю направление. Поэтому на вторичных обмотках DT наводятся ЭДС противоположной предыдущему случаю полярности. В результате открывается второй транзистор полумостового инвертора, а на базе первого импульс имеет закрывающую его полярность. Когда VT2 управляющей микросхемы закрывается, ток через него и первичную обмотку DT прекращается. Поэтому исчезают ЭДС на вторичных обмотках DT, и силовые транзисторы инвертора вновь оказываются закрыты. Далее опять длится "мертвая зона", после чего процессы повторяются.
Основная идея построения этого каскада заключается в том, что переменный магнитный поток в сердечнике управляющего трансформатора удается получить благодаря подаче питания в среднюю точку первичной обмотки этого трансформатора. Поэтому токи протекают через полуобмотки с одинаковым числом витков в разных направлениях. Когда оба выходных транзистора микросхемы закрыты ("мертвые зоны"), магнитный поток в сердечнике DT равен 0. Поочередное открывание транзисторов вызывает поочередное появление магнитного потока то одной, то другой полуобмотки. Результирующий магнитный поток в сердечнике получается переменным.
Последняя из указанных разновидностей (бестранзисторная схема с раздельным управлением) используется, например, в ИБП компьютера Appis (Перу). В этой схеме имеется два управляющих трансформатора DT1, DT2, первичные полуобмотки которых являются коллекторными нагрузками для выходных транзисторов микросхемы (рис.21). В этой схеме управление каждым из двух силовых ключей осуществляется через отдельный трансформатор. Питание подается на коллекторы выходных транзисторов микросхемы с общей шины Upom через средние точки первичных обмоток управляющих трансформаторов DT1, DT2.
Диоды D9, D10 с соответствующими частями первичных обмоток DT1, DT2 образуют схемы размагничивания сердечников. Остановимся на этом вопросе подробнее.


Рисунок 21. Согласующий каскад импульсного блока питания "Appis" (бестранзисторная схема с раздельным управлением).

Согласующий каскад (рис.21) по сути представляет собой два независимых однотактных прямоходовых преобразователя, т.к. открывающий ток протекает в базу силового транзистора во время открытого состояния согласующего транзистора, т.е. согласующий и связанный с ним через трансформатор силовой транзистор открыты одновременно. При этом оба импульсных трансформатора DT1, DT2 работают с постоянной составляющей тока первичной обмотки, т.е. с вынужденным подмагничиванием. Если не предусмотреть специальных мер по размагничиванию сердечников, то они войдут в магнитное насыщение за несколько периодов работы преобразователя, что приведет к значительному уменьшению индуктивности первичных обмоток и выходу из строя переключающих транзисторов VT1, VT2. Рассмотрим процессы, протекающие в преобразователе на транзисторе VT1 и трансформаторе DT1. Когда транзистор VT1 открывается, через него и первичную обмотку 1-2 DT1 протекает линейно нарастающий ток по цепи: Upom -2-1 DT1 - к-э VT1 - "корпус".
Когда отпирающий импульс на базе VT1 заканчивается, он резко закрывается. Ток через обмотку 1-2 DT1 прекращается. Однако ЭДС на размагничивающей обмотке 2-3 DT1 при этом меняет полярность, и через эту обмотку и диод D10 протекает размагничивающий сердечник DT1 ток по цепи: 2 DT1 - Upom - С9- "корпус"- D10-3DT1.
Ток этот - линейно спадающий, т.е. производная магнитного потока через сердечник DT1 меняет знак, и сердечник размагничивается. Таким образом во время этого обратного такта происходит возврат избыточной энергии, запасенной в сердечнике DT1 за время открытого состояния транзистора VT1, в источник (подзаряжается накопительный конденсатор С9 шины Upom).
Однако такой вариант реализации согласующего каскада наименее предпочтителен, т.к. оба трансформатора DT1, DT2 работают с недоиспользованием по индукции и с постоянной составляющей тока первичной обмотки. Перемаг-ничивание сердечников DT1, DT2 происходит по частному циклу, охватывающему только положительные значения индукции. Магнитные потоки в сердечниках из-за этого получаются пульсирующими, т.е. содержат постоянную составляющую. Это приводит к завышенным массогабарит-ным показателям трансформаторов DT1, DT2 и, кроме того, по сравнению с другими вариантами согласующего каскада, здесь требуется два трансформатора вместо одного.

(не TDA1555, а более серьёзные микросхемы), требуют БП с двухполярным питанием. И сложность тут возникает как раз не в самом УМЗЧ, а устройстве, которое повышало бы напряжение до нужного уровня, передавая хороший ток в нагрузку. Этот преобразователь является самой тяжелой частью самодельного автоусилителя. Однако при выполнении всех рекомендаций, вы сможете по данной схеме собрать проверенный ПН, схема которого приведена ниже. Чтоб увеличить - клац по ней.

Основа преобразователя - генератор импульсов построенный на специализированной распространённой микросхеме. Частота генерации задаётся номиналом резистора R3. Можно изменить её, добиваясь наилучшей стабильности работы и КПД. Рассмотрим подробнее устройство управляющей микросхемы TL494.

Параметры микросхемы TL494

Uпит.микросхемы (вывод 12) - Uпит.min=9В; Uпит.max=40В
Допустимое напряжение на входе DA1, DA2 не более Uпит/2
Допустимые параметры выходных транзисторов Q1, Q2:
Uнас менее 1.3В;
Uкэ менее 40В;
Iк.max менее 250мА
Остаточное напряжение коллектор-эммитер выходных транзисторов не более 1.3В.
I потребляемый микросхемой - 10-12мА
Допустимая мощность рассеивания:
0.8Вт при температуре окр.среды +25С;
0.3Вт при температуре окр.среды +70С.
Частота встроенного опорного генератора не более 100кГц.

  • генератор пилообразного напряжения DA6; частота определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам;
  • источник опорного стабилизированного напряжения DA5 с внешним выходом (вывод 14);
  • усилитель ошибки по напряжению DA3;
  • усилитель ошибки по сигналу ограничения тока DA4;
  • два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;
  • компаратор "мертвой зоны" DA1;
  • компаратор ШИМ DA2;
  • динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;
  • вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);
  • источник постоянного напряжения с номиналом 0.1B DA7;
  • источник постоянного тока с номиналом 0,7мА DA8.
Схема управления будет запускаться в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В. Цоколёвка микросхемы TL494 на картинке ниже:


Раскачивают нагрузку (силовой трансформатор) полевые транзисторы IRFZ44N. Дроссель L1 намотан на феритовом кольце диаметром 2 см из компьютерного блока питания. Он содержит 10 витков сдвоенным проводом диаметром 1 мм которые распределены по всему кольцу. Если у вас нет кольца, его можно намотать на феритовом стержне диаметром 8 мм и длиной пару сантиметров (не критично). Рисунок платы в Lay формате - скачайте в .


Предупреждаем , от правильного изготовление трансформатора сильно зависит роботоспособность блока преобразователя. Он мотается на феритовом кольце марки 2000НМ размерами 40*25*11 мм. Сначала нужно напильником закруглить все грани, обмотать его полотняной изолентой. Первичная обмотка намотана жгутом который состоит из 5 жил толщиной 0,7мм и содержит 2*6 витков, то есть 12. Мотается она так: берем одну жилу и мотаем ею 6 витков равномерно распределенных по кольцу, потом следующую мотаем вплотну к первой и так все 5 жил. На выводах жилы скручиваются. Потом на свободной от проводов части кольца начинаем мотать вторую половину первичной обмотки таким же образом. Получаем две равноценных обмотки. После этого обматываем кольцо изолентой и мотаем вторичную обмотку проводом 1,5мм 2*18 витков так же как и первичку. Чтобы при первом пуске ничего не сгорело, надо включать через резисторы Ом на 100 в каждом плече, а первичку трансформатора через лампу на 40-60 Ватт и все будет гуд даже при случайных ошибках. Небольшое дополнение: в схеме блока фильтров есть небольшой дефект, детали с19 r22 следует поменять местами, так как при вращении фазы на осциллографе появляется затухание амплитуды сигнала. В общем этот повышающий преобразователь напряжения можно смело рекомендовать для повторения, так как успешно собран он был уже многими радиолюбителями.

Микросхема TL494 реализует функционал ШИМ-контроллера и потому очень часто используется для построения импульсных двухтактных блоков питания (именно эта микросхема чаще всех встречается в компьютерных блоках питания).

Импульсные блоки питания выгодно отличаются от трансформаторных повышенным КПД, уменьшенным весом и габаритами, стабильностью выходных параметров. Однако, при этом они являются источниками ВЧ-помех и предъявляют особые требования к минимальной нагрузке (без нее БП может не запуститься).

Структурная схема TL494 выглядит следующим образом.

Рис. 1. Блок-схема TL494

Назначение выводов TL494 в привязке к корпусу выглядит так.

Рис. 2. Назначение выводов TL494

Рис. 3. Внешний вид в корпусе ДИП

Могут быть и другие исполнения.

В качестве современных аналогов можно рассматривать:

1.Улучшенные версии исходного чипа - TL594 и TL598 (оптимизирована точность и добавлен повторитель на входе соответственно);

2.Прямые аналоги российского производства - К1006ЕУ4, КР1114ЕУ4.

Итак, как видно из изложенного выше, микросхема до сих пор не устарела и может активно использоваться в современных блоках питания как узловой элемент.

Один из вариантов импульсного блока питания на TL494

Схема БП ниже.

Рис. 4. Схема БП

Здесь за выравнивание тока отвечают два полевых транзистора (обязательно крепятся на теплоотвод). Они должны питаться от отдельного источника постоянного тока. Подойдет, например, модульный преобразователь DC-DC, такой как TEN 12-2413 или аналог.

С выходных обмоток трансформатора (можно объединять несколько) должно поступать около 34 В.

Рис. 5. Второй вариант БП

Эта схема реализует БП с регулируемым выходным напряжением (до 30В) и порогом по силе тока (до 5А).

В качестве гальванической развязки выступает понижающий трансформатор. На выходе вторичной обмотки (или набора соединенных вторичных обмоток) должно быть около 40В.

L1 – тороидальный дроссель. VD1 – диод Шоттки, устанавливается на радиатор, так как он задействован в схеме выпрямления.

Пары резисторов R9 и 10, а также R3 и 4, используются для подстройки "грубо-точно" напряжения и силы тока соответственно.

На радиатор помимо диода VD1 следует вынести:

1.Диодный мост (подойдет, например, KBPC 3510);

2.Транзистор (в схеме использовался КТ827А, можно аналоги);

3.Шунт (на схеме обозначен R12);

4.Дроссель (катушка L1).

Теплоотвод лучше всего обдувать принудительно с помощью вентилятора (например, 12 см кулер от ПК).

Индикаторы силы тока и напряжения могут быть цифровыми (лучше всего взять готовые) или аналоговыми (потребуется калибровка шкалы).

Третий вариант

Рис. 6. Третий вариант БП

Вариант конечной реализации.

Рис. 7. Внешний вид устройства

Ввиду того, что TL494 имеет малую мощность встроенных ключевых элементов, в помощь для управления основным трансформатором TR2, были задействованы транзисторы T3 и 4, они в свою очередь питаются от управляющего трансформатора TR1 (а он управляется транзисторами T1 и 2). Получается своего рода двойной каскад управления.

Дроссель L5 мотался вручную на желтом кольце (50 витков медным проводом 1,5 мм).
Самые нагревающиеся элементы – транзисторы T3 и 4, а также диод D15. Они должны монтироваться на теплоотводы (желательно с обдувом).

Дроссель L2 используется в схеме для гашения ВЧ-помех в бытовой сети.
Ввиду того, что TL494 не умеет работать на высоких напряжениях, для ее питания применяется отдельный трансформатор (Tr3 – это BV EI 382 1189, на выходе которого 9 В, 500 мА).

При таком количестве элементов схема в сборе легко помещается в корпус Z4A, правда, последний необходимо немного доработать для обеспечения обдува (вентилятор ставится сверху).

Полный перечень элементов приведен ниже.

БП подключается к сети переменного тока и обеспечивает питание постоянным напряжением в диапазоне 0-30В и силой тока более 15А. Ограничение тока и напряжения удобно регулируется.


Дата публикации: 22.01.2018

Мнения читателей
  • Александр / 04.04.2019 - 08:25
    А файлом печатки неподелитесь? Можно на почту [email protected]

Николай Петрушов

TL494, что это за "зверь" такой?

TL494 (Texas Instruments) - это наверное самый распространённый ШИМ-контроллер, на базе которого создавалась основная масса компьютерных блоков питания, и силовые части различных бытовых приборов.
Да и сейчас эта микросхема довольно популярна среди радиолюбителей, занимающихся построением импульсных блоков питания. Отечественный аналог этой микросхемы - М1114ЕУ4 (КР1114ЕУ4). Кроме того ещё разные зарубежные фирмы выпускают данную микросхему с разными названиями. Например IR3M02 (Sharp), KA7500 (Samsung), MB3759 (Fujitsu). Всё это одна и та же микросхема.
Возраст её гораздо моложе TL431 . Выпускаться он начала фирмой Texas Instruments где то с конца 90-х - начала 2000-х годов.
Давайте-ка вместе попробуем разобраться, что она из себя представляет и что это за "зверь" такой? Рассматривать мы будем микросхему TL494 (Texas Instruments).

И так, для начала посмотрим, что у неё внутри.

Состав.

В её составе имеется:
- генератор пилообразного напряжения (ГПН);
- компаратор регулировки мертвого времени (DA1);
- компаратор регулировки ШИМ (DA2);
- усилитель ошибки 1 (DA3), используется в основном по напряжению;
- усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока;
- стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14;
- схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Параметры Мин. Макс. Ед. Изм.
V CC Напряжение питания 7 40 В
V I Напряжение на входе усилителя -0,3 V CC - 2 В
V O Напряжение на коллекторе 40 В
Ток коллектора (каждого транзистора) 200 мА
Ток обратной связи 0,3 мА
f OSC Частота генератора 1 300 кГц
C T Емкость конденсатора генератора 0,47 10000 нФ
R T Сопротивление резистора генератора 1,8 500 кОм
T A Рабочая температура TL494C
TL494I
0 70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания.....................................................41В

Входное напряжение усилителя....................................(Vcc+0.3)В

Выходное напряжение коллектора................................41В

Выходной ток коллектора.............................................250мА

Общая мощность рассеивания в непрерывном режиме....1Вт

Расположение и назначение выводов микросхемы.

Вывод 1

Это не инвертирующий (положительный) вход усилителя ошибки 1.
Если входное напряжение на нём будет ниже, чем напряжение на выводе 2, то на выходе этого усилителя ошибки 1, напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если на этом выводе напряжение будет выше, чем на выводе 2, то на выходе этого усилителя 1, появится напряжение (выход усилителя 1, будет иметь высокий уровень) и ширина (скважность) выходных импульсов будет уменьшаться тем больше, чем выше выходное напряжение этого усилителя (максимум 3,3 вольта).

Вывод 2

Это инвертирующий (отрицательный) вход усилителя сигнала ошибки 1.
Если входное напряжение на этом выводе выше, чем на выводе 1, на выходе усилителя ошибки напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если же напряжение на этом выводе ниже, чем на выводе 1, выход усилителя будет иметь высокий уровень.

Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.

Вывод 3

Это выходы усилителей ошибки 1 и 2, соединённых с этим выводом через диоды (схема ИЛИ). Если напряжение на выходе какого-либо усилителя меняется с низкого на высокий уровень, то на выводе 3 оно также переходит в высокий.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе микросхемы пропадают (нулевая скважность).
Если напряжение на этом выводе близко к 0 В, тогда длительность выходных импульсов (скважность) будет максимальна.

Вывод 3 обычно используется для обеспечения ОС усилителей, но если это необходимо, то вывод 3 может быть использован и в качестве входного, для обеспечения изменения ширины импульсов.
Если напряжение на нем высокое (> ~ 3,5 В), то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.

Вывод 4

Он управляет диапазоном изменения "мёртвого" времени (англ. Dead-Time Control), в принципе это та же самая скважность.
Если напряжение на нем будет близко к 0 В, то на выходе микросхемы будут, как минимально возможные, так и максимальные по ширине импульсы, что соответственно может задаваться другими входными сигналами (усилители ошибок, вывод 3).
Если напряжение на этом выводе будет около 1,5 В, то ширина выходных импульсов будет в районе 50% от их максимальной ширины.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Но стоит не забывать, что при увеличении "мёртвого" времени, диапазон регулировки ШИМ будет уменьшаться.

Изменяя напряжение на выводе 4, можно задавать фиксированную ширину "мёртвого" времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.

Давайте рассмотрим (для тех, кто не знает), что такое "мёртвое" время и для чего оно нужно.
При работе двухтактной схемы БП, импульсы поочерёдно подаются с выходов микросхемы на базы (затворы) выходных транзисторов. Так как любой транзистор - элемент инерционный, он не может мгновенно закрыться (открыться) при снятии (подаче) сигнала с базы (затвора) выходного транзистора. И если на выходные транзисторы подавать импульсы без "мёртвого" времени (то есть с одного импульс снять и на второй сразу подать), может наступить такой момент, когда один транзистор не успеет закрыться, а второй уже открылся. Тогда весь ток (называется сквозной ток) потечёт через оба открытых транзистора минуя нагрузку (обмотку трансформатора), и так как он ни чем не будет ограничен, выходные транзисторы мгновенно выйдут из строя.
Чтобы такое не произошло, необходимо после окончания одного импульса и до начала следующего - прошло какое-то определённое время, достаточное для надёжного закрытия того выходного транзистора, со входа которого снят управляющий сигнал.
Это время и называется "мёртвым" временем.

Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано?
Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов.
То есть если "посадить" вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада - 47,5-48%.

Вывод 5

Это вывод ГПН, он предназначен для подключения к нему времязадающего конденсатора Ct, второй конец которого подсоединяется к общему проводу. Ёмкость его выбирается обычно от 0,01 мкФ до 0,1 мкФ, в зависимости от выходной частоты ГПН импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества.
Выходную частоту ГПН можно как раз контролировать на этом выводе. Размах выходного напряжения генератора (амплитуда выходных импульсов) где-то в районе 3-х вольт.

Вывод 6

Тоже вывод ГПН, предназначенный для подключения к нему врямя-задающего резистора Rt, второй конец которого подсоединяется к общему проводу.
Величины Rt и Ct определяют выходную частоту ГПН, и рассчитываются по формуле для однотактного режима работы;

Для двухтактного режима работы формула имеет следующий вид;

Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением - цифру 1 необходимо будет поменять на 1,1.

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 8

В составе микросхемы имеется выходной каскад с двумя выходными транзисторами, которые являются ее выходными ключами. Выводы коллекторов и эмиттеров этих транзисторов свободные, и поэтому в зависимости от необходимости, эти транзисторы можно включать в схему для работы как с общим эмиттером, так и с общим коллектором.
В зависимости от напряжения на выводе 13, этот выходной каскад может работать как в двухтактном режиме работы, так и в однотактном. В однотактном режиме работы эти транзисторы можно соединять параллельно для увеличения тока нагрузки, что обычно и делают.
Так вот, вывод 8, это вывод коллектора транзистора 1.

Вывод 9

Это вывод эмиттера транзистора 1.

Вывод 10

Это вывод эмиттера транзистора 2.

Вывод 11

Это коллектор транзистора 2.

Вывод 12

К этому выводу подсоединяется «плюс» источника питания TL494CN.

Вывод 13

Это вывод выбора режима работы выходного каскада. Если этот вывод подсоединить к общему проводу, выходной каскад будет работать в однотактном режиме. Выходные сигналы на выводах транзисторных ключей будут одинаковыми.
Если подать на этот вывод напряжение +5 В (соединить между собой выводы 13 и 14), то выходные ключи будут работать в двухтактном режиме. Выходные сигналы на выводах транзисторных ключей будут противофазны и частота выходных импульсов будет в два раза меньше.

Вывод 14

Это выход стабильного И сточника О порного Н апряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.

Вывод 15

Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и вывод 1. Если второй усилитель ошибки не используется, то его обычно подключают к общему проводу (вывод 7).
С выводом 15, подключенным к +5 В и выводом 16, подключенным к общему проводу, выходное напряжение второго усилителя отсутствует, поэтому он не оказывает никакого влияния на работу микросхемы.

Принцип работы микросхемы.

Так как же работает ШИМ-контроллер TL494.
Выше мы подробно рассмотрели назначение выводов этой микросхемы и какую функцию они выполняют.
Если всё это тщательно проанализировать, то из всего этого становится ясно, как работает эта микросхема. Но я ещё раз очень кратко опишу принцип её работы.

При типовом включении микросхемы и подаче на неё питания (минус на вывод 7, плюс на вывод 12), ГПН начинает вырабатывать пилообразные импульсы, амплитудой около 3-х вольт, частота которых зависит от подключенных С и R к выводам 5 и 6 микросхемы.
Если величина управляющих сигналов (на выводе 3 и 4) меньше 3-х вольт, то на выходных ключах микросхемы появляются прямоугольные импульсы, ширина которых (скважность) зависит от величины управляющих сигналов на выводе 3 и 4.
То есть в микросхеме идёт сравнение положительного пилообразного напряжения с конденсатора Ct (C1) с любым из двух управляющих сигналов.
Логические схемы управления выходными транзисторами VT1 и VT2, открывают их только тогда, когда напряжение пилообразных импульсов выше сигналов управления. И чем больше эта разница, тем шире выходной импульс (больше скважность).
Управляющее напряжение на выводе 3 в свою очередь зависит от сигналов на входах операционных усилителей (усилителей ошибок), которые в свою очередь могут контролировать выходное напряжение и выходной ток БП.

Таким образом, увеличение или уменьшение величины какого либо управляющего сигнала, вызывает соответственно линейное уменьшение или увеличение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов, как уже было сказано выше, может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи непосредственно с вывода 3.

Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и "пощупать" на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.

Самый простой и быстрый способ - собрать всё это на макетной плате. Да, микросхему я поставил КА7500. Вывод "13" микросхемы посадил на общий провод, то есть у нас выходные ключи будут работать в однотактном режиме (сигналы на транзисторах будут одинаковыми), а частота повторения выходных импульсов, будет соответствовать частоте пилообразного напряжения ГПН.

Осциллограф я подключил к следующим контрольным точкам:
- Первый луч к выводу "4", для контроля постоянного напряжения на этом выводе. Находится в центре экрана на нулевой линии. Чувствительность - 1 вольт на деление;
- Второй луч к выводу "5", для контроля пилообразного напряжения ГПН. Находится он так же на нулевой линии (совмещены оба луча) в центре осциллографа и с такой же чувствительностью;
- Третий луч на выход микросхемы к выводу "9", для контроля импульсов на выходе микросхемы. Чувствительность луча 5 вольт на деление (0,5 вольт, плюс делитель на 10). Находится в нижней части экрана осциллографа.

Забыл сказать, выходные ключи микросхемы подключены с общим коллектором. По другому сказать - по схеме эмиттерного повторителя. Почему повторителя? Потому что сигнал на эмиттере транзистора в точности повторяет сигнал базы, чтобы нам всё было хорошо видно.
Если снимать сигнал с коллектора транзистора, то он будет инвертирован (перевёрнут) по отношению к сигналу базы.
Подаём питание на микросхему и смотрим что у нас имеется на выводах.

На четвёртой ножке у нас ноль (бегунок подстроечного резистора в крайнем нижнем положении), первый луч находится на нулевой линии в центре экрана. Усилители ошибки тоже не работают.
На пятой ножке мы видим пилообразное напряжение ГПН (второй луч), амплитудой чуть больше 3-х вольт.
На выходе микросхемы (вывод 9) мы видим прямоугольные импульсы, амплитудой около 15-ти вольт и максимальной ширины (96%). Точки в нижней части экрана - это как раз фиксированный порог скважности и есть. Чтобы его было лучше видно, включим растяжку на осциллографе.

Ну вот, сейчас видно лучше. Это как раз и есть время, когда амплитуда импульса падает до нуля и выходной транзистор закрыт это короткое время. Уровень нуля для этого луча в нижней части экрана.
Ну что, давайте добавим напряжение на вывод "4" и посмотрим что у нас получается.

На выводе "4" подстроечным резистором я установил постоянное напряжение величиной 1 вольт, первый луч поднялся на одно деление (прямая линия на экране осциллографа). Что мы видим? Мёртвое время увеличилось (уменьшилась скважность), это пунктирная линия в нижней части экрана. То есть выходной транзистор закрыт на время уже примерно на половину длительности самого импульса.
Добавим ещё один вольт подстроечным резистором на вывод "4" микросхемы.

Мы видим, что первый луч поднялся ещё на одно деление вверх, длительность выходных импульсов стала ещё меньше (1/3 от длительности всего импульса), а мёртвое время (время закрытия выходного транзистора) увеличилось до двух третьей. То есть наглядно видно, что логика микросхемы сравнивает уровень сигнала ГПН с уровнем управляющего сигнала, и пропускает на выход только тот сигнал ГПН, уровень которого выше управляющего сигнала.

Чтобы стало ещё понятней - длительность (ширина) выходных импульсов микросхемы будет такой, какой является длительность (ширина) выходных импульсов пилообразного напряжения находящихся выше уровня управляющего сигнала (выше прямой линии на экране осциллографа).

Идём дальше, добавляем ещё один вольт на вывод "4" микросхемы. Что мы видим? На выходе микросхемы очень короткие импульсы, по ширине примерно такие же, как и выступающие выше прямой линии верхушки пилообразного напряжения. Включим растяжку на осциллографе, чтобы импульс было лучше видно.

Вот, мы видим короткий импульс, в течении которого выходной транзистор будет открыт, а всё остальное время (нижняя линия на экране) будет закрыт.
Ну что, попробуем поднять напряжение на выводе "4" ещё больше. Ставим подстроечным резистором напряжение на выводе выше уровня пилообразного напряжения ГПН.

Ну всё, БП у нас перестанет работать, так как на выходе полный "штиль". Выходных импульсов нет, так как на управляющем выводе "4" у нас постоянное напряжение уровнем больше 3,3 вольта.
Абсолютно то же самое будет, если подавать управляющий сигнал и на вывод "3", или на какой либо усилитель ошибки. Кому интересно, можете сами проверить опытным путём. Притом, если управляющие сигналы будут сразу на всех управляющих выводах, управлять микросхемой (преобладать), будет сигнал с того управляющего вывода, амплитуда которого больше.

Ну что, давайте попробуем отключить вывод "13" от общего провода и подсоединить его к выводу "14", то есть переключить режим работы выходных ключей из однотактного в двухтактный. Посмотрим, что у нас получится.

Подстроечным резистором выводим опять напряжение на выводе "4" на ноль. Включаем питание. Что мы видим?
На выходе микросхемы так же присутствуют прямоугольные импульсы максимальной длительности, но их частота следования стала в два раза меньше частоты пилообразных импульсов.
Такие же самые импульсы будут и на втором ключевом транзисторе микросхемы (вывод 10), с той лишь разницей, что они будут сдвинуты по времени относительно этих на 180 градусов.
Здесь так же присутствует максимальный порог скважности (2%). Сейчас его не видно, нужно подключать 4-й луч осциллографа и совмещать вместе два выходных сигнала. Щупа четвёртого нет под рукой, поэтому этого не сделал. Кто хочет, проверьте практически сами, чтобы в этом удостовериться.

В таком режиме микросхема работает точно так же, как и в однотактном режиме, лишь с той разницей, что максимальная длительность выходных импульсов здесь не будет превышать 48% от общей длительности импульса.
Так что долго рассматривать этот режим мы не будем, а просто посмотрим, какие у нас будут импульсы при напряжении на выводе "4" в два вольта.

Поднимаем напряжение подстроечным резистором. Ширина выходных импульсов уменьшилась до 1/6 общей длительности импульса, то есть тоже ровно в два раза, чем в однотактном режиме работы выходных ключей (там в 1/3 раза).
На выводе второго транзистора (вывод 10) будут такие же импульсы, только сдвинутые по времени на 180 градусов.
Ну вот в принципе мы и разобрали работу ШИМ контроллера.

Ещё по выводу "4". Как говорилось раньше, этот вывод можно использовать для "мягкого" старта блока питания. Как это организовать?
Очень просто. Для этого подключаем к выводу "4" RC цепочку. Вот например фрагмент схемы:

Как здесь работает "мягкий старт"? Смотрим схему. Конденсатор С1 через резистор R5 подключен к ИОН (+5 вольт).
При подаче питания на микросхему (вывод 12), на выводе 14 появляется +5 вольт. Начинает заряжаться конденсатор С1. Через резистор R5 протекает зарядный ток конденсатора, в момент включения он максимальный (конденсатор разряжен) и на резисторе возникает падение напряжения 5 вольт, которое подаётся на вывод "4". Это напряжение, как мы уже выяснили опытным путём, запрещает прохождение импульсов на выход микросхемы.
По мере заряда конденсатора, зарядный ток уменьшается и соответственно уменьшается и падение напряжения на резисторе. Напряжение на выводе "4" также уменьшается и на выходе микросхемы начинают появляться импульсы, длительность которых постепенно увеличивается (по мере заряда конденсатора). Когда конденсатор зарядится полностью - зарядный ток прекращается, напряжение на выводе "4" становится близко к нулю, и вывод "4" больше не оказывает влияния на длительность выходных импульсов. Блок питания выходит на свой рабочий режим.
Естественно Вы догадались, что время запуска БП (выхода его на рабочий режим) будет зависеть от величины резистора и конденсатора, и их подбором можно будет регулировать это время.

Ну вот, это кратко вся теория и практика, и ничего здесь особо сложного нет, и если Вы поймёте и разберётесь в работе этого ШИМ-а, то Вам не составит никакого труда разобраться и понять работу других ШИМ-ов.

Желаю всем удачи.