Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Варианты решения уравнений с параметром и модулем. Линейные уравнения с параметром Уравнения параметром модулем единственное решение

Варианты решения уравнений с параметром и модулем. Линейные уравнения с параметром Уравнения параметром модулем единственное решение

Цель:

  • повторить решение систем линейных уравнений с двумя переменными
  • дать определение системы линейных уравнений с параметрами
  • научит решать системы линейных уравнений с параметрами.

Ход урока

  1. Организационный момент
  2. Повторение
  3. Объяснение новой темы
  4. Закрепление
  5. Итог урока
  6. Домашнее задание

2. Повторение:

I. Линейное уравнение с одной переменной:

1. Дайте определение линейного уравнения с одной переменной

[Уравнение вида ax=b, где х – переменная, а и b некоторые числа, называется линейным уравнением с одной переменной]

2. Сколько корней может иметь линейное уравнение?

[- Если а=0, b0, то уравнение не имеет решений, х

Если а=0, b=0, то х R

Если а0, то уравнение имеет единственное решение, х =

3. Выясните, сколько корней имеет уравнение (по вариантам)

II. Линейное уравнение с 2 –мя переменными и система линейных уравнений с 2- мя переменными.

1. Дайте определение линейного уравнения с двумя переменными. Приведите пример.

[Линейным уравнением с двумя переменными называются уравнения вида ах +by=с, где х и у – переменные, а, b и с – некоторые числа. Например, х-у=5]

2. Что называется решением уравнения с двумя переменными?

[Решением уравнения с двумя переменными называются пара значений переменных, обращающие это уравнение в верное равенство.]

3. Является ли пара значений переменных х = 7, у = 3 решением уравнения 2х + у = 17?

4. Что называется графиком уравнения с двумя переменными?

[Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых является решениями этого уравнения.]

5. Выясните, что представляет собой график уравнения:

[Выразим переменную у через х: у=-1,5х+3

Формулой у=-1,5х+3 является линейная функция, графиком которой служит прямая. Так как, уравнения 3х+2у=6 и у=-1,5х+3 равносильны, то эта прямая является и графиком уравнения 3х+2у=6]

6. Что является графиком уравнения ах+bу=с с переменными х и у, где а0 или b0?

[Графиком линейного уравнения с двумя переменными, в котором хотя бы один из коэффициентов при переменных не равен нулю, является прямая.]

7. Что называется решением системы уравнений с двумя переменными?

[Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство]

8. Что значит решить систему уравнений?

[Решить систему уравнений – значит найти все ее решения или доказать, что решений нет.]

9. Выясните, всегда ли имеет такая система решения и если имеет, то сколько (графическим способом).

10. Сколько решений может иметь система двух линейных уравнений с двумя переменными?

[Единственное решение, если прямые пересекаются; не имеет решений, если прямые параллельны; бесконечно много, если прямые совпадают]

11. Каким уравнением обычно задается прямая?

12. Установите связь между угловыми коэффициентами и свободными членами:

I вариант:
  • у=-х+2
  • y= -x-3,

k 1 = k 2 , b 1 b 2, нет решений;

II вариант:
  • y=-х+8
  • y=2x-1,

k 1 k 2 , одно решение;

III вариант:
  • y=-x-1
  • y=-x-1,

k 1 = k 2 , b 1 = b 2, много решений.

Вывод:

  1. Если угловые коэффициенты прямых являющихся графиками этих функций различны, то эти прямые пересекаются и система имеет единственное решение.
  2. Если угловые коэффициенты прямых одинаковы, а точки пересечения с осью у различны, то прямые параллельны, а система не имеет решений.
  3. Если угловые коэффициенты и точки пересечения с осью у одинаковы, то прямые совпадают и система имеет бесконечно много решений.

На доске таблица, которую постепенно заполняет учитель вместе с учениками.

III. Объяснение новой темы.

Определение: Система вида

  • A 1 x+B 1 y=C
  • A 2 x+B 2 y=C 2

где A 1, A 2, B 1 ,B 2, C 1 C 2 – выражения, зависящие от параметров, а х и у – неизвестные, называется системой двух линейных алгебраических уравнений с двумя неизвестными в параметрах.

Возможны следующие случаи:

1) Если , то система имеет единственное решение

2) Если , то система не имеет решений

3) Если , то система имеет бесконечно много решений.

IV. Закрепление

Пример 1.

При каких значениях параметра а система

  • 2х - 3у = 7
  • ах - 6у = 14

а) имеет бесконечное множество решений;

б) имеет единственное решение

Ответ:

а) если а=4, то система имеет бесконечное множество решений;

б) если а 4, то решение единственное.

Пример 2.

Решите систему уравнений

  • x+(m+1)y=1
  • x+2y=n

Решение: а) , т.е. при m1 система имеет единственное решение.

б) , т.е. при m=1 (2=m+1) и n1 исходная система решений не имеет

в) , при m=1 и n=1 система имеет бесконечно много решений.

Ответ: а) если m=1 и n1, то решений нет

б) m=1 и n=1, то решение бесконечное множество

  • у - любое
  • x=n-2y

в) если m1 и n - любое, то

Пример 3.

  • ах-3ау=2а+3
  • х+ау=1

Решение: Из II уравнения найдем х=1-ау и подставим в I уравнение

а(1-ау)-3ау=2а+3

а-а 2 у-3ау=2а+3

А 2 у-3ау=а+3

А(а+3)у=а+3

Возможны случаи:

1) а=0. Тогда уравнение имеет вид 0*у=3 [у ]

Следовательно, при а=0 система не имеет решений

2) а=-3. Тогда 0*у=0.

Следовательно, у . При этом х=1-ау=1+3у

3) а0 и а-3. Тогда у=-, х=1-а(-=1+1=2

Ответ:

1) если а=0, то (х; у)

2) если а=-3, то х=1+3у, у

3) если а 0 и а?-3, то х=2, у=-

Рассмотрим II способ решения системы (1).

Решим систему (1) методом алгебраического сложения: вначале умножим первое уравнение системы на В 2, второе на – В 1 и сложим почленно эти уравнения, исключив, таким образом, переменную у:

Т.к. А 1 В 2 -А 2 В 1 0, то х =

Теперь исключим переменную х. Для этого умножим первое уравнение системы (1) на А 2 , а второе на – А 1 , и оба уравнения сложим почленно:

  • А 1 А 2 х +А 2 В 1 у=А 2 С 1
  • -А 1 А 2 х-А 1 В 2 у=-А 1 С 2
  • у(А 2 В 1 -А 1 В 2)=А 2 С 1 -А 1 С 2

т.к. А 2 В 1 -А 1 В 2 0 у =

Для удобства решения системы (1) введем обозначения:

- главный определитель

Теперь решение системы (1) можно записать с помощью определителей:

Приведенные формулы называют формулами Крамера.

Если , то система (1) имеет единственное решение: х=; у=

Если , или , , то система (1) не имеет решений

Если , , , , то система (1) имеет бесконечное множество решений.

В этом случае систему надо исследовать дополнительно. При этом, как правило, она сводится к одному линейному уравнению. В случае часто бывает удобно исследовать систему следующим образом: решая уравнение , найдем конкретные значения параметров или выразим один из параметров через остальные и подставим эти значения параметров в систему. Тогда получим систему с конкретными числовыми коэффициентами или с меньшим числом параметров, которую надо и исследовать.

Если коэффициенты А 1 , А 2 , В 1 , В 2 , системы зависят от нескольких параметров, то исследовать систему удобно с помощью определителей системы.

Пример 4.

Для всех значений параметра а решить систему уравнений

  • (а+5)х+(2а+3)у=3а+2
  • (3а+10)х+(5а+6)у=2а+4

Решение: Найдем определитель системы:

= (а+5)(5а+6) – (3а+10) (2а+3)= 5а 2 +31а+30-6а 2 -29а-30=-а 2 +2а=а(2-а)

= (3а+2) (5а+6) –(2а+4)(2а+3)=15а 2 +28а+12-4а 2 -14а-12=11а 2 +14а=а(11а+14)

=(а+5) (2а+4)-(3а+10)(3а+2)=2а 2 +14а+20-9а 2 -36а-20=-7а 2 -22а=-а(7а+22)


Пирогова Татьяна Николаевна – учитель высшей категории

МАОУ СОШ № 10 г. Таганрога.

«Решение уравнений с модулем и параметром»

10 класс, занятие элективного курса «Свойства функции».

Цели занятия.

    повторить различные способы решения уравнений с модулями;

    провести исследование зависимости числа корней от данных уравнения;

    развивать внимание, память, умение анализировать при проведении исследовательской работы и обобщении ее результатов.

План занятия.

    Мотивация.

    Актуализация знаний.

    Решение линейного уравнения с модулем разными способами.

    Решение уравнений содержащих модуль под модулем.

    Исследовательская работа по определению зависимости количества корней уравнения

| | х| - а |= в от значений а и в.

    Решение уравнений с двумя модулями и параметром.

    Рефлексия.

Ход занятия.

Мотивация. Как говорили древние философы «Мудрость – это любовь к знаниям, а любовь – это мера всех вещей». «Мера» на латинском языке -«modulus», от него и произошло слово «модуль». И сегодня мы с вами поработаем с уравнениями, содержащими модуль. Надеюсь, у нас все получится, и в конце занятия мы с вами станем мудрее.

Актуализация знаний. Итак, вспомним, что мы уже знаем о модуле.

    Определение модуля. Модулем действительного числа – называется само число, если оно неотрицательно и противоположное ему число, если оно отрицательно.

    Геометрический смысл модуля. Модуль действительного числа а равен расстоянию от начала отсчета до точки с координатой а на числовой прямой.

a 0 a

|– a | = | a | | a | x

    Геометрический смысл модуля разности величин. Модуль разности величин | а – в | - это расстояние между точками с координатами а и в на числовой прямой,

Т.е. длина отрезка [ а в ]

1) Еслиa < b 2) Еслиa > b

a b b a

S = b a S = a b

3) Если a = b , то S = a b = b a = 0

    Основные свойства модуля

    Модуль числа есть число неотрицательное, т.е. |x | ≥ 0 для любого x

    Модули противоположных чисел равны, т.е. |x | = |–x | для любого x

    Квадрат модуля равен квадрату подмодульного выражения, т.е. |x | 2 =x 2 для любого x

4. Модуль произведения двух чисел равен произведению модулей сомножителей, т.е.|a b | = |a | · |b |

5. Если знаменатель дроби отличен от нуля, то модуль дроби равен частному от деления модуля числителя на модуль знаменателя, т.е. при b ≠ 0

6. Для равенства любых чисел a и b справедливы неравенства :

| |a | – |b | | ≤ |a + b | ≤ |a | + |b |

| |a | – |b | | ≤ |a b | ≤ |a | + |b |

    График модуля у = | х | - прямой угол с вершиной в начале координат, стороны которого являются биссектрисами 1 и 2 квадрантов.

    Как построить графики функций? у = | х а |, у = | х | + в , у = | х а | + в, у = || х| а |

Пример. Решить уравнение 3

 

x

.

Способ 1. Метод раскрытия модулей по промежуткам.

5

5

,

1

3

2

,

2

1

1

,

2

3

2

,

2

2

1

x

x

x

x

x

x

x

x

x

x

Способ 2. Непосредственное раскрытие модуля.

Если модуль числа равен 3, то это число 3 или -3.

.

1

,

5

3

2

,

3

2

3

2

2

1

x

x

x

x

x

Способ 3 . Использование геометрического смысла модуля.

Необходимо найти на числовой оси такие значения х, которые удалены от 2 на расстояние, равное 3.

 

.

5

,

1

2

1

x

x

5

-1

2

3

3

Способ 4. Возведение обеих частей уравнения в квадрат.

Здесь используется свойство модуля и то, что обе части уравнения неотрицательные.

.

5

,

1

0

5

4

9

2

9

2

3

2

2

1

2

2

2

x

x

x

x

x

x

x

Способ 5. Графическое решение уравнения 3

x

Обозначим

x

x

f

x

f

Построим графики функций и :

2 -1 0 1 2 3 4 5

2 -1 0 1 2 3 4 5

Абсциссы точек пересечения графиков дадут корни и 5

x

Самостоятельная работа

решите уравнения:

| х – 1| = 3

| х – 5| = 3

| х –3| = 3

| х + 3| = 3

| х + 5| = 3

(-2; 4)

(2; 8)

(0; 6)

(-6; 0)

(-8;-2)

А теперь добавьте в условия еще один модуль и решите уравнения:

| | х| – 1| = 3

| | х| –5| = 3

| | х | – 3| = 3

| | х | + 3| = 3

| | х | + 5| = 3

( )

( )

(0)

(нет корней)

Итак, сколько корней может иметь уравнение вида | | х | а |= в? От чего это зависит?

Исследовательская работа по теме

«Определение зависимости количества корней уравнения | | х | а |= в от а и в »

Проведем работу по группам, с использованием аналитического, графического и геометрического способов решения.

Определим, при каких условиях данное уравнение имеет 1 корень, 2 корня, 3 корня, 4 корня и не имеет корней.

1 группа (по определению)

2 группа (используя геометрический смысл модуля) -в +в

а-в а а+в

3 группа (используя графики функций)

, а > 0

, а < 0

1 группа

2 группа

3 группа

Нет корней

в < 0 или в 0

в + а < 0

в < 0 или в 0

а + в < 0

в < 0 или в 0

в < – а

ровно один корень

в > 0 и в + а = 0

в > 0 и в + а = 0

в > 0 и в = – а

ровно два корня

в > 0 и в + а > 0

в + а < 0

в > 0 и в + а > 0

в + а < 0

в > 0 и в > | а |

ровно три корня

в > 0 и – в + а = 0

в > 0 и – в + а = 0

в > 0 и в = а

ровно четыре корня

в > 0 и – в + а >0

в > 0 и – в + а >0

в > 0 и в < а

Сравните результаты, сделайте общий вывод и составьте общую схему.

Конечно, необязательно эту схему запоминать . Главное в проведенном нами исследовании было – увидеть эту зависимость, используя разные методы , и теперь повторить свои рассуждения при решении таких уравнений нам будет уже несложно.

Ведь решение задания с параметром всегда подразумевает некоторое исследование.

Решение уравнений с двумя модулями и параметром.

1. Найти значения р, х| р 3| = 7 имеет ровно один корень.

Решение: | | х| – (р + 3)| = 7

р +3= -7, р = -10. Или геометрически

р + 3 7 р + 3 р + 3+7 р + 3+7=0, р = -10

7 7 по схеме уравнение такого вида имеет ровно один корень, если в = – а, где в =7, а = р +3

2. Найти значения р, при каждом из которых уравнение | | х| р 6| = 11 имеет ровно два корня.

Решение: | | х| – (р + 6)| = 11 геометрически

р + 6 11 р + 6 р + 6+11 р + 6-11<0, р < 5, р + 6+11>0, р > -17

11 11

по схеме уравнение такого вида имеет ровно два корня, если в + а > 0 и – в + а < 0, где в =11, а = р +6. -17< р < 5.

3. Найти значения р, при каждом из которых уравнение | | х| – 4 р р,

5. При каких значениях параметра р уравнение | | х –4 | – 3| + 2 р = 0 имеет три корня . Найти эти корни.

Преобразуем уравнение к виду:

| | х –4 | – 3|= – 2 р .

По схеме уравнение такого вида имеет три корня,

если –2 р =3>0,

т.е. р = –1,5.

Что мы сегодня делали?

Что делали?

Повторяли

Решали

Исследовали

Обобщали

Доказывали

Строили

Модуль

параметр

Что повторили?

Определение

Геометрический смысл

Свойства

Графики

Уравнения

Разные методы

Домашнее задание.

10x − 5y − 3z = − 9,

6 x + 4 y − 5 z = − 1,3 x − 4 y − 6 z = − 23.

Уравняем коэффициенты при x в первом и втором уравнениях, для этого умножим обе части первого уравнения на 6, а второго уравнения – на 10, получаем:

60x − 30 y − 18z = − 54,60x + 40 y − 50z = − 10.

Вычитаем из второго уравнения полученной системы первое урав-

нение, получаем: 70 y − 32 z = 44, 35 y − 16 z = 22.

Из второго уравнения исходной системы вычитаем третье уравнение, умноженное на 2, получаем: 4 y + 8 y − 5 z + 12 z = − 1 + 46,

12 y + 7z = 45.

Теперь решаем новую систему уравнений:

35y − 16z = 22,12 y + 7z = 45.

К первому уравнению новой системы, умноженному на 7, прибавляем второе уравнение, умноженное на 16, получаем:

35 7 y + 12 16y = 22 7 + 45 16,

Теперь подставляем y = 2, z = 3 в первое уравнение исходной сис-

темы, получаем: 10x − 5 2 − 3 3 = − 9, 10x − 10 − 9 = − 9, 10x = 10, x = 1.

Ответ: (1; 2;3) . ▲

§ 3. Решение систем с параметром и с модулями

ax + 4 y = 2 a,

Рассмотрим систему уравнений

x + ay = a.

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

В этой системе, на самом деле, три переменные, а именно: a , x , y . Неизвестными считают x и y , a называют параметром. Требуется найти решения (x , y ) данной системы при каждом значении параметра a .

Покажем, как решают такие системы. Выразим переменную x из второго уравнения системы: x = a − ay . Подставляем это значение для x в первое уравнение системы, получаем:

a (a − ay) + 4 y = 2 a,

(2 − a )(2 + a ) y = a (2 − a ) .

Если a = 2, то получаем уравнение 0 y = 0. Этому уравнению удовлетворяет любое число y , и тогда x = 2 − 2 y , т. е. при a = 2 пара чисел (2 − 2 y ; y ) является решением системы. Так как y может быть

любым числом, то система при a = 2 имеет бесконечно много решений.

Если a = − 2, то получаем уравнение 0 y = 8. Это уравнение не имеет ни одного решения.

Если теперь a ≠ ± 2,

то y =

a (2 − a)

(2 − a )(2 + a )

2 + a

x = a − ay = a −

2 + a

Ответ: При a = 2 система имеет бесконечно много решений вида (2 − 2 y ; y ) , где y − любое число;

при a = − 2 система не имеет решений;

при a ≠ ± 2, система имеет единственное решение

. ▲

2 + a

2 + a

Мы решили эту систему и установили, при каких значениях параметра a система имеет одно решение, когда имеет бесконечно много решений и при каких значениях параметра a она не имеет решений.

Пример 1. Решите систему уравнений

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

−3

y − 1

3x − 2 y = 5.

Из второго уравнения системы выражаем x через y , получаем

2 y + 5

подставляем это значение для x в первое уравнение сис-

темы, получаем:

2y + 5

−3

y − 1

−3

−1

5 = 0

Выражение

y = −

y > −

; если

−5

= −y

Выражение y − 1 = 0,

если y = 1. Если

y > 1, то

y − 1

Y − 1, а ес-

ли y < 1, то

y − 1

1 − y .

Если y ≥ 1, то

y − 1

Y −1 и

получаем уравнение:

−3 (y

− 1) = 3,

−3 y

3, −

(2 2 +

5 ) = 3. Число 2 > 1, так что пара (3;2) является ре-

шением системы.

Пусть теперь

5 ≤ y <1,

y − 1

− y ;

нахождения

получаем

уравнение

3 y −3

4 y + 10

3 y = 6,

13 y = 8

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

(2 y + 5) =

Но меньше, чем

поэтому пара чисел

является решением системы.

y < −

то получаем уравнение:

3 y −3

4 y −

3y = 6,

5 y =

28 , y = 28 .

значение

поэтому решений нет.

Таким образом, система имеет два решения (3;2) и 13 27 ; 13 8 . ▲

§ 4. Решение задач с помощью систем уравнений

Пример 1. Путь от города до посёлка автомобиль проезжает за 2,5 часа. Если он увеличит скорость на 20 км/ч, то за 2 часа он пройдёт путь на 15 км больший, чем расстояние от города до посёлка. Найдите это расстояние.

Обозначим через S расстояние между городом и посёлком и через V скорость автомобиля. Тогда для нахождения S получаем систему из двух уравнений

2,5V = S ,

(V + 20) 2 = S + 15.

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

во второе уравнение:

S + 20 2

S +15,

S = 25,

S = 125.

Ответ: 125 км. ▲

Пример 2. Сумма цифр двузначного числа равна 15. Если эти цифры поменять местами, то получится число, которое на 27 больше исходного. Найдите эти числа.

Пусть данное число ab , т.е. число десятков равно a , а число единиц равно b . Из первого условия задачи имеем: a + b = 15. Если из числа ba вычесть число ab , то получится 27, отсюда получаем второе уравнение: 10 b + a − (10 a + b ) = 27. x

2010-2011 уч. год., № 3, 8 кл. Математика. Системы уравнений.

Умножим обе части уравнения на 20, получим: x + 8 y = 840. Для нахождения x и y получили систему уравнений

Ответ: 40 т, 100 т. ▲

Пример 4. Оператор ЭВМ, работая с учеником, обрабатывает задачу за 2 ч 24 мин. Если оператор будет работать 2 ч, а ученик 1 ч, то бу-

дет выполнено 2 3 всей работы. Сколько времени потребуется операто-

ру и ученику в отдельности на обработку задачи?

Обозначим всю работу за 1, производительность оператора за x и производительность ученика за y . Учитываем, что

2 ч 24 мин = 2 5 2 ч = 12 5 ч .

Из первого условия задачи следует, что (x+y ) 12 5 = 1. Из второго условия задачи следует, что 2 x + y = 2 3 . Получили систему уравнений

(x+y)

2 x + y =

Решаем эту систему методом подстановки:

− 2 x ;

−2 x

−x

− 1;

; x =

; y =

© 2010, ФЗФТШ при МФТИ. Составитель: Яковлева Тамара Харитоновна

Слайд 2

.

Решение уравнений с параметрами и модулями, применяя свойства функций в неожиданных ситуациях и освоение геометрических приемов решения задач. Нестандарные уравнения Цель урока.

Слайд 3

Абсолютной величиной или модулем числа a называется число a, если a>0, число -a, если a 0 ׀ a ׀={ 0, если a=0 -a, если a 0) равносильно двойному неравенству -a 0. Неравенство ׀ х׀>a, (если a>0) равносильно двум неравенствам - Неравенство׀ х׀>a, (если a

Слайд 4

Решить уравнение с параметрами - значит указать, при каких значениях параметров существуют решения и каковы они. а) определить множество допустимых значений неизвестного и параметров; б) для каждой допустимой системы значений параметров найти соответствующие множества решений уравнения. Повторение важнейшего теоретического материала по темам «Решение уравнений с параметрами»

Слайд 5

1. Решить уравнение׀ х-2 ׀ =5; Ответ 7;-3 ׀ х-2 ׀ =-5; Ответ решения нет ׀ х-2 ׀ =х+5; ; Ответ решения нет; 1,5 ׀ х-2 ׀ = ׀ х+5 ׀ ; Ответ решения нет; -1,5; решения нет; -1,5; Устные упражнения.

Слайд 6

2. Решить уравнениеах=1; Ответ. Если a=0, то нет решения;если a=0, тох=1/ a 1.3. Решить уравнение (а²-1) х = а+ 1. 1) а = 1; тогда уравнение принимает вид Ох = 2 и не имеет решения 2) а = ­ 1; получаем Ох = О, и очевидно х - любое. 1 3) если а =± 1 ,то х = -- а-1 Ответ. Если а=-1 , то х- любое; если а=1, то нет решения 1 если а =± 1 ,то х= -- а-1

Слайд 7

2.Решить уравнение׀ х+3 ׀ + ׀ у -2 ׀= 4; . 2 3. 4. 1

Слайд 8

3 3 2 x y 0 1 Ответ: (-3; 2).

Слайд 9

2. Решить уравнениеaх=1;

Ответ. Если a=0, то нет решения; если a=0, то х=1/ a 1.3. Решить уравнение (а²-1) х = а+ 1. 1) а = 1; тогда уравнение принимает вид Ох = 2 и не имеет решения 2) а = ­ 1; получаем Ох = О, и очевидно х - любое. 1 3) если а =± 1 ,то х = -- а-1 Ответ. Если а=-1 , то х- любое; если а=1, то нет решения 1 если а =± 1 ,то х= -- а-1

Слайд 10

3 Построить график функции у= ׀х׀, у= ׀х-2 ׀, у = ׀ х+5I , у = ׀х-2 ׀+3, у = ׀ х+3 ׀-2

y x У=IxI 1 2 -3 -4 -1 1 -2 2 3 0 -5 4 5 6 -1 -2 Y=Ix+3I-2 Y=Ix-2I Y=Ix+5I Y=Ix-2I +3

К задачам с параметром можно отнести, например, поиск решения линейных и квадратных уравнений в общем виде, исследование уравнения на количество имеющихся корней в зависимости от значения параметра.

Не приводя подробных определений, в качестве примеров рассмотрим следующие уравнения:

у = kx, где x, y – переменные, k – параметр;

у = kx + b, где x, y – переменные, k и b – параметр;

аx 2 + bх + с = 0, где x – переменные, а, b и с – параметр.

Решить уравнение (неравенство, систему) с параметром это значит, как правило, решить бесконечное множество уравнений (неравенств, систем).

Задачи с параметром можно условно разделить на два типа:

а) в условии сказано: решить уравнение (неравенство, систему) – это значит, для всех значений параметра найти все решения. Если хотя бы один случай остался неисследованным, признать такое решение удовлетворительным нельзя.

б) требуется указать возможные значения параметра, при которых уравнение (неравенство, система) обладает определенными свойствами. Например, имеет одно решение, не имеет решений, имеет решения, принадлежащие промежутку и т. д. В таких заданиях необходимо четко указать, при каком значении параметра требуемое условие выполняется.

Параметр, являясь неизвестным фиксированным числом, имеет как бы особую двойственность. В первую очередь, необходимо учитывать, что предполагаемая известность говорит о том, что параметр необходимо воспринимать как число. Во вторую очередь, свобода обращения с параметром ограничивается его неизвестностью. Так, например, операции деления на выражение, в котором присутствует параметр или извлечения корня четной степени из подобного выражения требуют предварительных исследований. Поэтому необходима аккуратность в обращении с параметром.

Например, чтобы сравнить два числа -6а и 3а, необходимо рассмотреть три случая:

1) -6a будет больше 3a, если а отрицательное число;

2) -6а = 3а в случае, когда а = 0;

3) -6а будет меньше, чем 3а, если а – число положительное 0.

Решение и будет являться ответом.

Пусть дано уравнение kx = b. Это уравнение – краткая запись бесконечного множества уравнений с одной переменной.

При решении таких уравнений могут быть случаи:

1. Пусть k – любое действительное число не равное нулю и b – любое число изR, тогда x = b/k.

2. Пусть k = 0 и b ≠ 0, исходное уравнение примет вид 0 · x = b. Очевидно, что у такого уравнения решений нет.

3. Пусть k и b числа, равные нулю, тогда имеем равенство 0 · x = 0. Его решение – любое действительное число.

Алгоритм решения такого типа уравнений:

1. Определить «контрольные» значения параметра.

2. Решить исходное уравнение относительно х при тех значениях параметра, которые были определены в первом пункте.

3. Решить исходное уравнение относительно х при значениях параметра, отличающихся от выбранных в первом пункте.

4. Записать ответ можно в следующем виде:

1) при … (значения параметра), уравнение имеет корни …;

2) при … (значения параметра), в уравнении корней нет.

Пример 1.

Решить уравнение с параметром |6 – x| = a.

Решение.

Легко видеть, что здесь a ≥ 0.

По правилу модуля 6 – x = ±a, выразим х:

Ответ: х = 6 ± a, где a ≥ 0.

Пример 2.

Решить уравнение a(х – 1) + 2(х – 1) = 0 относительно переменной х.

Решение.

Раскроем скобки: aх – а + 2х – 2 = 0

Запишем уравнение в стандартном виде: х(а + 2) = а + 2.

В случае, если выражение а + 2 не нуль, т. е. если а ≠ -2, имеем решение х = (а + 2) / (а + 2), т.е. х = 1.

В случае, если а + 2 равно нулю, т.е. а = -2, то имеем верное равенство 0 · x = 0, поэтому х – любое действительное число.

Ответ: х = 1 при а ≠ -2 и х € R при а = -2.

Пример 3.

Решить уравнение x/a + 1 = а + х относительно переменной х.

Решение.

Если а = 0, то преобразуем уравнение к виду а + х = а 2 + ах или (а – 1)х = -а(а – 1). Последнее уравнение при а = 1 имеет вид 0 · x = 0, следовательно, х – любое число.

Если а ≠ 1, то последнее уравнение примет вид х = -а.

Данное решение можно проиллюстрировать на координатной прямой (рис. 1)

Ответ: нет решений при а = 0; х – любое число при а = 1; х = -а при а ≠ 0 и а ≠ 1.

Графический метод

Рассмотрим еще один способ решения уравнений с параметром – графический. Этот метод применяется достаточно часто.

Пример 4.

Сколько корней в зависимости от параметра a имеет уравнение ||x| – 2| = a?

Решение.

Для решения графическим методом строим графики функций y = ||x| – 2| и y = a (рис. 2) .

На чертеже наглядно видны возможные случаи расположения прямой y = a и количество корней в каждом из них.

Ответ: корней у уравнения не будет, если а < 0; два корня будет в случае, если a > 2 и а = 0; три корня уравнение будет иметь в случае а = 2; четыре корня – при 0 < a < 2.

Пример 5.

При каком а уравнение 2|x| + |x – 1| = a имеет единственный корень?

Решение.

Изобразим графики функций y = 2|x| + |x – 1| и y = a. Для y = 2|x| + |x – 1|, раскрыв модули методом промежутков, получим:

{-3x + 1, при x < 0,

y = {x + 1, при 0 ≤ x ≤ 1,

{3x – 1, при x > 1.

На рисунке 3 хорошо видно, что единственный корень уравнение будет иметь только при а = 1.

Ответ: а = 1.

Пример 6.

Определить число решений уравнения |x + 1| + |x + 2| = a в зависимости от параметра а?

Решение.

График функции y = |x + 1| + |x + 2| будет представлять собой ломаную. Ее вершины будут располагаться в точках (-2; 1) и (-1; 1) (рисунок 4) .

Ответ: если параметр a будет меньше единицы, то корней у уравнения не будет; если а = 1, то решение уравнения является бесконечное множество чисел из отрезка [-2; -1]; если значения параметра а будут больше одного, то уравнение будет иметь два корня.

Остались вопросы? Не знаете, как решать уравнения с параметром?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.