Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Воздушное душирование. Область применения. Стационарн.возд.души.Передвижные душирующие установки Душирование рабочих мест приточным воздухом осуществляется

Воздушное душирование. Область применения. Стационарн.возд.души.Передвижные душирующие установки Душирование рабочих мест приточным воздухом осуществляется

Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно требованиям нормативных документов интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать :

− 35 Вт/м 2 при облучении более 50% поверхности тела;

− 70 Вт/м 2 при облучении от 25 до 50% поверхности тела;

− 100 Вт/м 2 при облучении не более 25% поверхности тела.

От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Санитарные нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45°С, а для оборудования, внутри которого температура близка к 100°С, температура на его поверхности должна быть не выше 35°С .

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите рабочих от возможного перегрева :

дистанционное управление ходом технологического процесса;

− воздушное или водо-воздушное душирование рабочих мест;

− устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха;

− использование защитных экранов, водяных и воздушных завес;

− применение средств индивидуальной защиты, спецодежды, спецобуви и др.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов :

1. Непрозрачные – к таким экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др. В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника.

2. Прозрачные – это экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы. В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран.


3. Полупрозрачные – к ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

По принципу действия экраны подразделяются на :

− теплоотражающие;

− теплопоглощающие;

− теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др. .

Эффективность защиты от теплового излучения с помощью экранов оценивается по формуле :

где Q бз – интенсивность теплового излучения без применения защиты, Вт/м 2 , Q з – интенсивность теплового излучения с применением защиты, Вт/м 2 .

Кратность ослабления теплового потока, т, защитным экраном определяется по формуле:

где Q бз − интенсивность потока излучателя (без использования защитного экрана), Вт/м 2 , Q з − интенсивность потока теплового излучения экрана, Вт/м 2 .

Коэффициент пропускания экраном теплового потока, τ, равен:

τ = 1/m . (2.8)

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

Воздушный оазиссоздают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с .

Воздушные завесысоздают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку .

Воздушные душиприменяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м 2) .

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае, у рабочего возникают неприятные ощущения (например, шум в ушах).

Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

1700 Вт/м2. Температура воздуха в рабочей зоне =25 0С. Согласно табл. 4.23 средняя температура =19 0С, подвижность воздуха на рабочем месте

2,3 м/с. Расстояние от душирующего патрубка до рабочего Х=1,8 м.

При адиабатическом процессе охлаждения на выходе из форсуночной камеры температура воздуха 18,5 0С.

Принимаем душирующий патрубок ПДН-4

Размеры 630 мм h1=1540 мм l1=1260 мм

Расчётная площадь 0,23 м2

Коэффициент m=4,5 n=3,1 =3,2 =00-200

Определяем площадь теплового сечения патрубка:

Табличное значение =0,23 м2

Находим скорость воздуха на выходе из патрубка:

Устанавливаем расход воздуха подаваемого душирующим патрубком:

В холодный период года и в переходных условиях температура и скорость движения воздуха на рабочем месте должны быть в таких пределах:

18...19 0С =2,0...2,5 м/с =16 0С

Оставляем неизменными принятые для тёплого периода, определяем температуру воздуха на выходе из душирующего патрубка при =16 0С и =19 0С используя формулу:

Вентиляция кабин крановщиков

Система вентиляции кабин крановщиков с подачей наружного воздуха. Вентиляция должна обеспечивать подпор в наличии 10-15 Па.

Система вентиляции кабины с подачей наружного воздуха осуществляется по схеме, приведённой на рис. 1. Конструкция содержит коллектор, расположенный вдоль пути движения крана, заборное устройство, движущееся в щели коллектора и жёстко соединённое с кабиной крановщика. В качестве уплотняющего устройства щели коллектора применяют резиновую ленту или гидравлический затвор.

Рис. 1 - Вентиляция крановой кабины с подачей воздуха через коллектор: 1 - коллектор, 2 - вентилятор, 3 - крановая кабина, 4 - глушитель, 5 - уплотнительная резиновая трубка

Местная вытяжная вентиляция

Местные отсосы от оборудования выделяющего пары, газы, дурные запахи

Расчёт зонта - козырька над загрузочным отверстием нагревательной печи

Зонт - козырёк над загрузочным отверстием печи предназначен для улавливания потока газов, выходящих из отверстия под влиянием избыточного давления в печи. Размеры всасывающего отверстия зонта должны соответствовать размерам всасывающейся струи с учётом её искривления под действием гравитационных сил (рис. 2.)

Рис. 2

Определим объём удаляемого воздуха и размеры зонта - козырька у термической печи, имеющей загрузочное отверстие размером h?b=0,5?0,5 м. В печи поддерживается температура газов tг=1150 0С, температура воздуха в рабочей зоне =25 0С

1. Определим среднюю скорость, с которой газы выбиваются из отверстия печи, предварительно вычислив:

где - коэффициент расхода 0,65

Избыточное давление в печи, Па

h0 - половина высоты загрузочного отверстия, м

и - плотность соответственно воздуха рабочей зоны и газов выходящих из печи, кг/м3

2. Объём газов, выходящих из рабочего проёма печи, м3/с

где - площадь рабочего проёма печи, м2

2,78(0,5?0,5)=0,69 м3/с

0,690,25=0,17 кг/с

3. Вычисляем критерий Архимеда

где - эквивалентный по площади диаметр рабочего проёма, м

и - температура соответственно газов в печи и воздуха в рабочей зоне, К

Критерий Архимеда при м

4. Расстояние, на котором ось потока газов искривлённого под давлением гравитационных сил, достигает плоскости всасывающего отверстия зоны, м

где m, n - коэффициенты изменения скорости и температуры при отношениях высоты загрузочного отверстия h к его ширине и в пределах 0,5...1 применяются равными соответственно 5 и 4,2. Определим расстояние x при h0=0,25 m=5 n=4,2

5. Диаметр потока газов на расстоянии x при

0,565+0,440,653=0,852 м

6. Находим вылет и ширину зонта

Б=b+(150...200)=b+0,2=0,5+0,2=0,7 м

7. Определяем расход отсасываемой смеси газов и воздуха:

8. Расход воздуха подсасываемого из помещения:

0,727-0,69=0,037 м3/с

0,0371,18=0,044 кг/с

9. Температура смеси газов и смеси, 0С

Которая недопустимо высока и для естественной (< 300 0С) и для механической (< 80 0С). Принимаем =300 0C, когда расход подсасываемого воздуха м/с, увеличивается до значения:

Суммарный объём:

Определим высоту дымовой трубы для удаления найденной массы воздуха. Примем диаметр трубы dТР=500 мм

площадь поперечного сечения трубы:

0,7850,52=0,196 м2

Скорость воздуха в трубе м/с

Предварительно задаёмся высотой трубы hтр=6 м. На головке трубы устанавливаем дефлектор диаметром dдеф=500 мм, высота дефлектора hдеф=1,7dдеф=1,70,5=0,85 м

Коэффициент местного сопротивления дефлектора

Коэффициент местного сопротивления зонта

Потери давления в вытяжной трубе вместе с дефлектором с учётом загрязнения стенок определяем по формуле:

Уточним примерную высоту вытяжной трубы из равенства:

Температура наружного воздуха tн=21,2 0С, тогда:

Высота зонта:

Подставим наёденные значения в формулу:

5,73 м близко к предварительно применимому

Расчет системы воздушного душирования на рабочем месте заливщика металла

Воздушное душирование - одно из наиболее эффективных мер борьбы с лучистым теплом, а также с токсическими газами и парами, выделяющимися при работе у кузнечных молотов и прессов. Подаваемый сверху через специальные устройства подогретый (зимой) и охлажденный (летом) воздух снабжает рабочего свежим увлажненным воздухом, а регулировкой скорости движения воздуха можно добиться и частичного понижения температуры воздуха у рабочего места. Иногда воздух подается на рабочее место посредством гибких прорезиненных шлангов от передвижной воздушной душирующей установки. Внешний вид душирующей установки изображен на рис. 3.4.

Рисунок 3.4 - Душирующая установка

Расчёт воздушного душа проведём по методу Злобинского Б.М.

Расчет воздушных душей сводится к определению диаметра душевого патрубка и параметров выходящего из него воздуха.

Диаметр поперечного сечения струи рассчитывается по формуле 2:

где -коэффициент турбулентности, зависящий от формы выходного сечения (0,06 - 0,12). Примем =0,12.

х -расстояние от места выхода струи от патрубка до рабочего места. Примем x = 2 м.

d 0 - диаметр выходного сечения трубы. Примем d 0 =0,7.

Скорость, с которой воздух выходит из патрубка, рассчитывается по формуле:

где площ - средняя скорость воздуха на рабочей площадке. Эта скорость не должна превышать 0,3 м/с. Примем площ =0,3 м/с;

b - коэффициент, изменяющийся от 0,05 до 1 в зависимости от отношения. Примем d р.пл. =2 м, тогда:

Подставим полученные значения в (3) и получим, что

Необходимая температура на выходе из патрубка определяется по формуле:

где t o.c. - температура окружающей среды, она составляет 20-25 0 С. Примем 22,5 0 С.

t cp - средняя нужная температура воздуха на плавильной площадке. По нормам СанПиН 2.2.4.548-96 допустимая температура на площадке 19-21 0 С, примем 20 0 С.

С - коэффициент, зависящий как и коэффициент b от отношения и изменяющийся от 0,345 до 0,22. Примем С=0,25.

Таким образом, для того, чтобы температура на плавильной площадке была равна 20 0 С предусмотрена струя воздуха d=2,05 м при t патр =19,3 0 С, которая подается на плавильную площадку вентилятором с скоростью 0,15 м/с и производительностью 1800 м 3 /ч.

Расчет экономической эффективности установки системы воздушного душирования типа ВД-1800 на рабочем месте заливщика металла будет произведен в организационно-экономическом разделе дипломного проекта.

Заболевания, вызываемые воздействием нагревающего микроклимата литейных (горячих) цехов и их предупреждение

Нагревающий микроклимат -- сочетание параметров, при котором имеет место изменение теплообмена человека с окружающей средой, проявляющееся в накоплении тепла в организме (> 2 Вт) и/или в увеличении доли потерь тепла испарением влаги (> 30 %). Воздействие нагревающего микроклимата также вызывает нарушение состояния здоровья, снижение работоспособности и производительности труда.

Работа в таких условиях может привести к дискомфортным теплоощущениям, значительному напряжению процессов терморегуляции, а при большой тепловой нагрузке -- и к нарушению здоровья (перегреванию).

Такого рода микроклимат создается в помещениях, где технология связана со значительными выделениями тепла в окружающую среду, то есть когда производственные процессы идут при высокой температуре (обжиг, прокаливание, спекание, плавка, варка, сушка). Источниками тепла являются нагретые до высокой температуры поверхности оборудования, ограждений, обрабатываемые материалы, остывающие изделия, выбивающиеся через неплотности оборудования горячие пары и газы. Выделение тепла определяется также работой машин, станков, вследствие чего механическая и электрическая энергия переходит в тепловую.

Сущность изобретения: в корпусе расположен вентилятор, связанный с ним выходной напорный штуцер с соплом, имеющим продольный участок и выходной конец. На корпусе установлены откидные лапы с фиксаторами их положения. Короб образован двумя П-образными частями, шарнирно закрепленными на выходном конце сопла, расположенными на сопле и связанными с каждой из частей короба механизмом синхронного их перемещения. Продольный участок сопла имеет постоянное поперечное сечение, прямоугольную форму и длину, составляющую 0,3-0,7 ширины продольного участка. Штуцер подвода воды установлен на выходном конце сопла. Корпус выполнен круглым. 2 з.п. ф-лы, 5 ил.

Изобретение относится к вентиляционным системам, а именно к передвижным установкам местного водо-воздушного душирования. Известны установки местной вентиляции, содержащие неподвижный корпус, расположенные в нем вентилятор и выходной патрубок с соплом. Недостатком данного устройства является то, что оно стационарно и не может применяться при ремонтных и пусконаладочных работах для местной временной вентиляции рабочих мест. Известна установка водо-воздушного душирования, содержащая передвижной корпус, расположенный в нем вентилятор, связанный с ним выходной напорный патрубок с соплом и штуцер подвода воды к соплу. Недостатком данного устройства является невозможность регулирования размера вентилируемого места и интенсивности, так как выходной конец сопла имеет круглое постоянное сечение и трудность транспортировки корпуса к вентилируемому месту. Целью изобретения является повышение производительности и эффективности труда за счет облегчения транспортировки, обеспечения регулирования размера выходящего из сопла охлаждающе-вентилирующего потока и приближения вентилятора к зоне охлаждения. Для достижения указанной цели в установке сопло выполнено с участком постоянного сечения прямоугольной формы, длина l которого выбрана из условия l = (0,3...0,7)h, где h - ширина сечения, штуцер подвода воды установлен около выходного конца участка постоянного сечения, корпус выполнен круглым и устройство снабжено установленными на корпусе откидными лапами с фиксаторами их положения, двумя образующими короб частями П-образной формы, шарнирно закрепленными около выходного участка постоянного сечения сопла так, что ось шарниров параллельна основанию частей короба и перпендикулярна оси сопла, расположенным на сопле и связанным с каждой из частей короба механизмом синхронного их перемещения. Кроме того, длина l частей короба выбрана из условия l = (2,5...4)h, а каждая из частей выполнена клиновой расширяющейся по длине, при этом угол раскрытия выбран не более 15 о, а стенки частей короба выполнены переменной высоты, увеличивающейся от выходного конца участка постоянного сечения сопла, при этом максимальная высота стенки выбрана в пределах (0,55...0,65)h. Выполнение корпуса круглым с откидными лапами позволяет осуществлять транспортировку в любую зону производства ремонтных работ, а за счет максимального приближения установки к охлаждаемой зоне повысить эффективность охлаждения. Штуцер расположен в зоне максимального скоростного потока, что позволяет эффективно распылять воду и равномерно распределять ее в потоке. Выполнение сопла прямоугольной формы и снабжение его коробом с указанными размерами и регулируемой шириной обеспечивает эффективную подачу охлаждающего потока к заданному месту, создание плоской завесы и регулирование потока в зависимости от требований к охлаждению зоны работы. На фиг.1 показана предлагаемая установка, вид сбоку, в состоянии транспортировки; на фиг.2 - то же, в рабочем состоянии; на фиг.3 - сопло при минимальном раскрытии частей короба, вид сбоку; на фиг.4 - то же, при максимальном раскрытии; на фиг.5 - то же, вид сверху. Установка содержит круглый корпус 1, расположенный в нем вентилятор 2 с выходным напорным патрубком 3 с соплом 4 и установленные на корпусе 1 откидные лапы 5 с фиксаторами 6 их положения. Сопло 4 выполнено с участком 7 постоянного сечения прямоугольной формы высотой b, шириной h и длиной l, причем длина l = (0,3...0,7)h. Установка содержит штуцер 8 подвода воды к соплу 4, установленный около выходного конца 9, и две образующие короб части 10 П-образной формы, закрепленные около выходного конца 9 участка 7 с помощью шарниров 11, ось а-а которых параллельна основанию 12 частей 10 и перпендикулярна оси б-б сопла 4. Длина L частей 10 короба выбрана из условия L = (2,5...4)h. Каждая из частей 10 выбрана клиновой расширяющейся по длине с углом раскрытия не более 15 о. Высота b стенок частей 10 выполнена переменной с максимальной высотой 0,55...0,65 высоты b. Кроме того, установка содержит механизм синхронного перемещения частей 10, выполненный, например, в виде закрепленной на участке 7 стойки 13, связанного с ней винта 14, установленной на винте 14 гайки 15 и двух тяг 16, один конец каждой из которых шарнирно связан с гайкой 15, а другой - с соответствующей частью 10. Установка работает следующим образом. При убранных в корпус 1 лапах 5 и отсоединенном сопле 4 установку переносят или перекатывают в заданное место, как можно ближе к охлаждаемой зоне, в которой производится работа. После этого откидываются лапы 5 и они закрепляются фиксаторами 6. Корпус 1 закрепляется при этом в устойчивом положении. На вентиляторе 2 закрепляют выходной напорный патрубок 3 с соплом 4, а на штуцере 8 - трубопровод системы подвода воды. Затем в зависимости от расстояния от сопла 4 до охлаждаемой зоны, ее размера и условий вокруг охлаждаемой зоны и требований и интенсивности охлаждения устанавливают положение частей 10. Чем дальше от сопла 4 до зоны охлаждения, чем больше требование к интенсивности, тем меньше размер выходного сечения короба, т.е. тем ближе части 10 поворачиваются друг к другу механизмом синхронного перемещения частей 10. При этом винт 14, поворачиваясь, перемещает гайку 15 и тяги 16 или сводят или разводят части 10, поворачивая их вокруг оси а-а шарниров 11. Включают вентилятор 2 и подают воду через штуцер 8. Вода, попадая в сопло 4 в зоне максимальной скорости движения воздуха, перемешивается с ним и выходит из короба. Попадая в зону охлаждения и испаряясь там, она вместе с вентилирующим потоком воздуха охлаждает пространство, включающим и зону работы. Правильный выбор угла раскрытия в зависимости от ожидаемых условий и размеров зоны охлаждения в пределах 15 о позволяет подобрать условия подачи потока воздуха с необходимыми параметрами движения и в необходимых количествах.

Формула изобретения

1. УСТАНОВКА ВОДОВОЗДУШНОГО ДУШИРОВАНИЯ, содержащая корпус, расположенный в нем вентилятор, связанный с ним выходной напорный штуцер с соплом, имеющим продольный участок и выходной конец, штуцер подвода воды к соплу, отличающаяся тем, что установка снабжена установленными на корпусе откидными лапами с фиксаторами их положения, коробом, образованным двумя П-образными частями, шарнирно закрепленными на выходном конце сопла, расположенными на сопле и связанными с каждой из частей короба механизмом синхронного их перемещения, при этом продольный участок сопла имеет постоянное поперечное сечение, прямоугольную форму и длину, составляющую (0,3 ... 0,7)h, где h - ширина продольного участка, причем штуцер подвода воды установлен на выходном конце сопла, а корпус выполнен круглым. 2. Установка по п.1, отличающаяся тем, что П-образные части короба имеют длину, составляющую (2,5 ... 4)h, где h - ширина участка сопла, а каждая из частей короба выполнена клиновидной формы с углом раскрытия клина не более 15 o . 3. Установка по п.1, отличающаяся тем, что стенки П-образных частей короба выполнены переменной высоты, увеличивающейся от выходного конца сопла, при этом максимальная высота стенок составляет (0,55 ... 0,65)b, где b - высота продольного участка сопла.

Воздушный душ его назначение и области применения Воздушным душем называют поток воздуха направленный на ограниченное рабочее место или непосредственно на человека. Во многих случаях когда работа производится в обстановке ощутимого теплового излучения а средства общей вентиляции оказываются все же недостаточными для того чтобы поддерживать требуемую температуру и влажность воздуха и устранить нарушение терморегуляции нормального теплообмена между телом человека и окружающей средой воздушные души должны несколько корректировать...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Раздел XI . Воздушные души

Лекция№24. Проектирование воздушных душей

План

24.1. Воздушный душ, его назначение и области применения.

24.3. Расчет воздушных душей.

24.1. Воздушный душ, его назначение и области применения

Воздушным душем называют поток воздуха, направленный на ограниченное рабочее место или непосредственно на человека.

В противоположность общей вентиляции, которая ставит своей задачей поддерживать определенные условия воздушной среды во всем помещении, местный приток имеет целью создание местных условий воздушной среды на ограниченном участке помещения. Такими участками являются или места наиболее длительного пребывания в них рабочих, или места отдыха.

Таким образом, назначение воздушного душа заключается в том, чтобы в пространстве, ограниченной зоной действия потока, поддерживать особые, отличные от господствующих во всем помещении условий воздушной среды. Эти условия должны удовлетворять определенным, заранее поставленным гигиеническим и физиологическим требованиям.

Воздушное душирование применяют для создания на постоянных рабочих местах требуемых метеорологических условий при тепловом облучении и при открытых производственных процессах, если технологическое оборудование, выделяющее вредные вещества, не имеет укрытий или местной вытяжной вентиляции.

Воздушный душ устраивают в следующих случаях:

  1. при нецелесообразности средствами вентиляции получать во всем объеме помещения надлежащие санитарно-гигиенические условия;
  2. при наличии в помещении небольшого количества рабочих со строго фиксированными рабочими местами;
  3. при наличии источников лучистого тепла, интенсивностью более 140 Вт/м 2 .
  4. для предотвращения распространения вредных веществ на постоянные рабочие места при открытых технологических процессах, сопровождающихся выделением вредных веществ, и невозможности устройства укрытия или местной вытяжной вентиляции.

Во многих случаях, когда работа производится в обстановке ощутимого теплового излучения, а средства общей вентиляции оказываются все же недостаточными, для того чтобы поддерживать требуемую температуру и влажность воздуха и устранить нарушение терморегуляции (нормального теплообмена между телом человека и окружающей средой), воздушные души должны несколько корректировать условия воздушной среды. Сюда нужно отнести металлургические и машиностроительные заводы (где души необходимы у промышленных печей, прокатных станов, молотов, прессов и т. д.), стекольные заводы, красильные фабрики, хлебозаводы и т. п.

Таким же коррективом воздушные души должны служить при широко применяемом в настоящее время естественном вентилировании (аэрации) современных цехов. Это может иметь место в тех случаях, когда естественный приток, обусловливаемый при аэрации расположением приточных отверстий (фрамуг и пр.), не может в достаточной степени обслужить рабочие места (кузницы, литейные, термические и другие цехи).

Роль воздушных душей при вентилировании путем аэрации приобретает особое значение и в силу того, что естественный приток вводится без предварительной подготовки (без подогрева или охлаждения и т. д.), в то время как для воздушных душей такая предварительная подготовка может быть осуществлена с небольшими затратами.

В промышленных цехах, спроектированных с учетом аэрации, расход воздуха для воздушных душей составляет незначительный процент от естественного воздухообмена.

И наконец, в горячих цехах в районах с высокой наружной температурой, когда общая вентиляция (естественная или механическая) поддерживает в цехах температуру воздуха на 3—5° выше наружной, воздушные души, устраиваемые на рабочих местах, создают условия, близкие к комфортным, причем наружный воздух для них подвергается предварительной обработке (охлаждению).

При проектировании воздушного душирования должны быть приняты меры, предотвращающие сдувание производственных вредных выделений на близко расположенные постоянные рабочие места. Воздушная струя должна быть направлена так, чтобы по возможности исключалось подсасывание ею горячего или загрязненного газами воздуха.

Для воздушного душирования рабочих мест следует предусматривать воздухораспределители, обеспечивающие минимальную турбулизацию воздушной струи и имеющие устройства для изменения направления струи в горизонтальной плоскости на угол 180 о и в вертикальной плоскости на угол 30 о .

При проектировании воздушного душирования наружным воздухом следует принимать расчетные параметры А для теплого периода года и Б для холодного периода.

Воздушное душирование при тепловом облучении должно обеспечивать на местах постоянного пребывания работающих температуру и скорость движения воздуха в соответствии с приложением Г табл. Г.1 СП 60.13330.2012.

24.2. Конструктивные решения воздушных душей

Воздушные души классифицируются по нескольким признакам:

  1. По характеру распределения потока:
  • с рассосредоточенной подачей воздуха;
  • с сосредоточенной подачей воздуха;

Сосредоточенная подача применяется только когда рабочее место строго фиксировано.

  1. По качеству подаваемого воздуха:
  • с обработкой подаваемого воздуха;
  • без обработки подаваемого воздуха.
  1. По месту забора воздуха:
  • с забором наружного воздуха;
  • с забором внутреннего воздуха (рециркуляционные).

При устройстве воздушного душа воздух подвергается той или иной обработке. Может меняться температура воздушного потока, относительная влажность, концентрация газов, скорость движения воздуха.

При борьбе с лучистым теплом бывает достаточно увеличить скорость воздушного потока до тех пор, пока температура окружающего воздуха не превышает 30 о . При t > 30 о увеличение скорости потока не может обеспечить нормальное самочувствие организма.

Системы, подающие воздух к воздушным душам, проектируются отдельными от систем другого назначения.

Расстояние от места выпуска воздуха до рабочего мета следует принимать не менее 1м при минимальном диаметре патрубка 0,3м, а воздушный поток должен быть направлен:

  • на грудь человека горизонтально или сверху под углом до 45 о для обеспечения на рабочем месте нормируемых температур и скорости движения воздуха;
  • в лицо (зону дыхания) горизонтально или сверху под углом до 45 о для обеспечения на рабочем месте допустимых концентраций по газу и пыли; при этом должны обеспечиваться нормируемые температура и скорость движения воздуха;

Если невозможно достигнуть нормируемой температуры воздуха в душирующей струе на рабочем месте повышением скорости движения воздуха, следует устанавливать форсунки тонкого распыла воды в потоке подаваемого воздуха на выходе из воздухораздающего устройства или применять адиабатическое охлаждение воздуха при централизованной обработке его в приточных камерах. Установки с применением искусственного холода требуют значительных эксплуатационных и капитальных затрат, поэтому искусственное охлаждение воздуха следует применять только в случаях, когда нормируемая температура воздуха на рабочем месте ниже температуры приточного воздуха, полученной его адиабатическим охлаждением.

При проектировании систем воздушного душирования, как правило, следует применять воздухораспределители УДВ. Воздухораспределители обычно устанавливают на высоте не менее 1,8м от пола (до их нижней кромки). Для душирования группы постоянных рабочих мест могут быть использованы воздухораспределители ВГК и ВСП.

Унифицированные душирующие воздухораспределители УДВ рекомендуются к предпочтительному применению. Они разработаны в следующих исполнениях: нижний подвод воздуха без увлажнения УДВн и с увлажнением УДВну; верхний подвод воздуха без увлажнения УДВв и с увлажнением УДВув. Душирование фиксированных рабочих мест может осуществляться душирующими патрубками различного типа: ППД, ПДн, ПДв, ПДУ, ВП.

При тепловом облучении постоянных рабочих мест нагретыми поверхностями интенсивностью от 140 до 350 Вт/м 2 предусматривается установка вентиляторов — вееров. При применении вентиляторов — вееров следует обеспечивать поддержание допустимой ГОСТ 12.1.005-88 температуры воздуха увеличивая скорость на 0,2м/с более указанной в этом ГОСТе. Для этой цели душирование рабочих мест внутренним воздухом осуществляется поворотными аэраторами ПАМ-24. Расстояние от аэратора до рабочего места определяется конкретными условиями, максимальное расстояние равно 20м.

В помещениях общественных, административно-бытовых и производственных зданий, сооружаемых в lV климатическом районе, а также при обосновании и в других климатических районах, при избытках явной теплоты более 23 Вт/м 3 следует предусматривать дополнительно к общеобменной приточной вентиляции установку потолочных вентиляторов для увеличения скорости движения воздуха на рабочих местах или на отдельных участках в теплый период года. Для этой цели используют потолочные вентиляторы ВПК-15 "Союз", "Зангезур-3", "Зангезур-5".Применение потолочных вентиляторов не следует ограничивать районами с жарким климатом. Их рационально применять и в районах с умеренным климатом.

24.3. Расчет воздушных душей

Достижение нормируемых параметров воздуха определяется расчетом по предельным (осевым) значениям параметров воздушной струи на постоянном рабочем месте.

За расчетные величины на постоянном рабочем месте рекомендуется принимать:

Температуру смеси воздуха в воздушной струе - равной нормируемой по приложению Г табл. Г.1 СП 60.13330.2012, при тепловом облучении интенсивностью 140 Вт/м 2 и более. Для промежуточных значений поверхностей плотности лучистого теплового потока температуру смеси воздуха в душирующей струе следует определять интерполяцией.

Минимальную концентрацию вредных веществ в воздушной струе - равной ПДК по приложению 2 ГОСТ 12.1.005-88;

Скорость движения воздушной струи - соответствующей температуре смеси воздуха в душирующей струе по приложению Е СНиП41- 01 - 2003 при тепловом облучении интенсивностью 140 Вт/м 2 и более.

При расчете определяется типоразмер душирующего воздухораспределителя F o , скорость выпуска воздуха и расход воздуха на воздухораспределитель L o . Температура приточного воздуха на выходе из воздухораспределителя t o должна быть меньше или равной нормируемой.

Расчет производится из условия обеспечения нормируемых параметров воздуха на постоянном рабочем месте по следующим формулам:

а) при тепловыделениях и t норм > t o , полученной при адиабатическом охлаждении воздуха или без охлаждения,

; (24.1)

, (24.2)

где, х — расстояние от воздухораспределителя до рабочего места, м; т , п — соответственно скоростной и температурный коэффициенты воздухораспределителя (принимаются по справочной литературе);

б) при тепловыделениях и t норм < t o , полученной при адиабатическом охлаждении,

; (24.3)

; (24.4)

T o = t норм , (24.5)

т.е. требуется неискусственное охлаждение воздуха;

в) при газо- и пылевыделениях рассчитывается по формуле (24.2),а

, (24.6)

где, ПДК — предельно допустимая концентрация вредных веществ на рабочем месте в соответствии с приложением 2 ГОСТ 12.1.005-88; Z рз и Z о — концентрация вредных веществ в воздухе рабочей зоны и в приточном воздухе на выходе из воздухораспределителя.

Если заданы величины т , п , F o и х следует определять: при по формуле (24.4); t o при по формуле (24.5); при по формуле (24.2); t o при по формуле

. (24.7)

Другие похожие работы, которые могут вас заинтересовать.вшм>

9215. СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ 339.13 KB
Одним из важнейших параметров полета летательного аппарата (ЛА) является его скорость. В основу принципа действия современных бортовых средств измерения параметров движения летательного аппарата (ЛА) в воздушной среде положен аэрометрический метод. С развитием авиационной техники возросли требования к точности измерения аэрометрических параметров.
2191. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ 1.05 MB
Опоры воздушных линий связи должны обладать достаточной механической прочностью сравнительно продолжительным сроком службы быть относительно легкими транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем начали широко применяться железобетонные опоры.
17174. Моделирование и расчет воздушных и тепловых потоков в системах охлаждения двигателей 4.35 MB
Компьютерное моделирование газодинамических задач течения воздушных потоков по каналам системы охлаждения автомобиля с использованием современных пакетов конечного элементного анализа Ansys и SolidWorks.
12423. МОДЕРНИЗАЦИЯ КОМПРЕССОРНОЙ УСТАНОВКИ ДЛЯ ВОЗДУШНЫХ ВЫКЛЮЧАТЕЛЕЙ НА ТАШТЭС НАПРЯЖЕНИЕМ 110 И 220 кВ НА ОСНОВЕ УЛУЧШЕНИЯ РЕЖИМОВ АВТОМАТИЗАЦИИ 506.97 KB
Анализ систем сжатого воздуха Сжатый воздух представляет собой воздух который хранится и используется под давлением превышающим атмосферное. Системы сжатого воздуха принимают определенную массу атмосферного воздуха занимающую определенный объем и сжимают ее до меньшего объема. На системы сжатого воздуха приходится до 10 промышленного потребления электроэнергии или около 80 ТВтч год в 15 государствах – членах ЕС.
13720. Проектирование РЭС 1.33 MB
Результатом проектирования как правило служит полный комплект документации содержащий достаточные сведения для изготовления объекта в заданных условиях. По степени новизны проектируемых изделий различают следующие задачи проектирования: частичная модернизация существующего РЭС изменение его параметров структуры и конструкции обеспечивающая сравнительно небольшое несколько десятков процентов улучшение одного или нескольких показателей качества для оптимального решения тех же или новых задач; существенная модернизация которая...
4768. Проектирование JK-триггера 354.04 KB
Состояние триггера принято определять по значению потенциала на прямом выходе. Структура универсального триггера. Принцип действия устройства. Выбор и обоснование типов элементов. Корпусы микросхем выбор в библиотеках DT. Проектирование универсального триггера в САПР DipTrce. Технологический процесс
8066. Логическое проектирование 108.43 KB
Логическое проектирование базы данных Логическое проектирование базы данных процесс создания модели используемой на предприятии информации на основе выбранной модели организации данных но без учета типа целевой СУБД и других физических аспектов реализации. Логическое проектирование является вторым...
377. ПРОЕКТИРОВАНИЕ МОЛНИЕЗАЩИТЫ 1.41 MB
Прямой удар молнии поражение молнией непосредственный контакт канала молнии с объектом сопровождающийся протеканием по нему тока молнии. Вторичное проявление молнии наведение высокого потенциала на изолированных от земли металлических конструкциях вызванное разрядами молнии. Занос высоких потенциалов перенесение в здание или сооружение по подземным наземным и надземным металлическим коммуникациям электрических потенциалов возникающих при прямых и близких ударах молнии. Молниезащита комплекс мероприятий направленных на...
6611. Проектирование переходов ТП 33.61 KB
Исходная информация: маршрут обработки детали, оборудование, приспособления, последовательность переходов в операциях, размеры, допуски, припуски на обработку.
3503. Проектирование ИС учета ТМЦ 1007.74 KB
Объектом исследования является общество с ограниченной ответственностью “Мермад”. Предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач по учету ТМЦ.