Σκάλες.  Ομάδα εισόδου.  Υλικά.  Πόρτες.  Κλειδαριές.  Σχέδιο

Σκάλες. Ομάδα εισόδου. Υλικά. Πόρτες. Κλειδαριές. Σχέδιο

» Έκφραση για τον υπολογισμό του εμβαδού των σχημάτων. Πώς να βρείτε το εμβαδόν μιας φιγούρας; V. Εργασία για το σπίτι

Έκφραση για τον υπολογισμό του εμβαδού των σχημάτων. Πώς να βρείτε το εμβαδόν μιας φιγούρας; V. Εργασία για το σπίτι

Στην προηγούμενη ενότητα, αφιερωμένη στην ανάλυση της γεωμετρικής σημασίας ενός ορισμένου ολοκληρώματος, λάβαμε έναν αριθμό τύπων για τον υπολογισμό του εμβαδού ενός καμπυλόγραμμου τραπεζοειδούς:

S (G) = ∫ a b f (x) d x για μια συνεχή και μη αρνητική συνάρτηση y = f (x) στο διάστημα [ a ; β ],

S (G) = - ∫ a b f (x) d x για μια συνεχή και μη θετική συνάρτηση y = f (x) στο διάστημα [ a ; β ] .

Αυτοί οι τύποι ισχύουν για την επίλυση σχετικά απλών προβλημάτων. Στην πραγματικότητα, συχνά θα πρέπει να δουλέψουμε με πιο σύνθετα στοιχεία. Από αυτή την άποψη, θα αφιερώσουμε αυτήν την ενότητα σε μια ανάλυση αλγορίθμων για τον υπολογισμό του εμβαδού των ψηφίων που περιορίζονται από συναρτήσεις σε ρητή μορφή, δηλ. όπως y = f(x) ή x = g(y).

Θεώρημα

Έστω οι συναρτήσεις y = f 1 (x) και y = f 2 (x) καθορισμένες και συνεχείς στο διάστημα [ a ; b ] , και f 1 (x) ≤ f 2 (x) για οποιαδήποτε τιμή x από [ a ; β ] . Τότε ο τύπος για τον υπολογισμό του εμβαδού του σχήματος G, οριοθετημένος από τις ευθείες x = a, x = b, y = f 1 (x) και y = f 2 (x) θα μοιάζει με S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Ένας παρόμοιος τύπος θα ισχύει για την περιοχή ενός σχήματος που οριοθετείται από τις ευθείες y = c, y = d, x = g 1 (y) και x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Απόδειξη

Ας δούμε τρεις περιπτώσεις για τις οποίες θα ισχύει ο τύπος.

Στην πρώτη περίπτωση, λαμβάνοντας υπόψη την ιδιότητα της προσθετικότητας της περιοχής, το άθροισμα των εμβαδών του αρχικού σχήματος G και του καμπυλόγραμμου τραπεζοειδούς G 1 είναι ίσο με το εμβαδόν του σχήματος G 2. Αυτό σημαίνει ότι

Επομένως, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Μπορούμε να εκτελέσουμε την τελευταία μετάβαση χρησιμοποιώντας την τρίτη ιδιότητα του ορισμένου ολοκληρώματος.

Στη δεύτερη περίπτωση, η ισότητα είναι αληθής: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Η γραφική απεικόνιση θα μοιάζει με:

Αν και οι δύο συναρτήσεις είναι μη θετικές, παίρνουμε: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Η γραφική απεικόνιση θα μοιάζει με:

Ας προχωρήσουμε στην εξέταση της γενικής περίπτωσης όταν y = f 1 (x) και y = f 2 (x) τέμνουν τον άξονα O x.

Σημειώνουμε τα σημεία τομής ως x i, i = 1, 2, . . . , n - 1 . Αυτά τα σημεία χωρίζουν το τμήμα [a; b ] σε n μέρη x i - 1 ; x i, i = 1, 2, . . . , n, όπου α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Ως εκ τούτου,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Μπορούμε να κάνουμε την τελευταία μετάβαση χρησιμοποιώντας την πέμπτη ιδιότητα του ορισμένου ολοκληρώματος.

Ας δείξουμε τη γενική περίπτωση στο γράφημα.

Ο τύπος S (G) = ∫ a b f 2 (x) - f 1 (x) d x μπορεί να θεωρηθεί αποδεδειγμένος.

Τώρα ας προχωρήσουμε στην ανάλυση παραδειγμάτων υπολογισμού του εμβαδού των ψηφίων που περιορίζονται από τις γραμμές y = f (x) και x = g (y).

Θα ξεκινήσουμε την εξέταση οποιουδήποτε από τα παραδείγματα κατασκευάζοντας ένα γράφημα. Η εικόνα θα μας επιτρέψει να αναπαραστήσουμε πολύπλοκα σχήματα ως ενώσεις απλούστερων σχημάτων. Εάν η κατασκευή γραφημάτων και σχημάτων σε αυτά είναι δύσκολη για εσάς, μπορείτε να μελετήσετε την ενότητα για τις βασικές στοιχειώδεις συναρτήσεις, τον γεωμετρικό μετασχηματισμό γραφημάτων συναρτήσεων, καθώς και την κατασκευή γραφημάτων κατά τη μελέτη μιας συνάρτησης.

Παράδειγμα 1

Είναι απαραίτητο να προσδιοριστεί η περιοχή του σχήματος, η οποία περιορίζεται από την παραβολή y = - x 2 + 6 x - 5 και τις ευθείες γραμμές y = - 1 3 x - 1 2, x = 1, x = 4.

Λύση

Ας σχεδιάσουμε τις γραμμές στο γράφημα στο καρτεσιανό σύστημα συντεταγμένων.

Στο τμήμα [ 1 ; 4 ] η γραφική παράσταση της παραβολής y = - x 2 + 6 x - 5 βρίσκεται πάνω από την ευθεία y = - 1 3 x - 1 2. Από αυτή την άποψη, για να λάβουμε την απάντηση χρησιμοποιούμε τον τύπο που λήφθηκε νωρίτερα, καθώς και τη μέθοδο υπολογισμού του ορισμένου ολοκληρώματος χρησιμοποιώντας τον τύπο Newton-Leibniz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Απάντηση: S(G) = 13

Ας δούμε ένα πιο σύνθετο παράδειγμα.

Παράδειγμα 2

Είναι απαραίτητο να υπολογίσετε την περιοχή του σχήματος, η οποία περιορίζεται από τις γραμμές y = x + 2, y = x, x = 7.

Λύση

Σε αυτή την περίπτωση, έχουμε μόνο μία ευθεία που βρίσκεται παράλληλα στον άξονα x. Αυτό είναι x = 7. Αυτό απαιτεί να βρούμε μόνοι μας το δεύτερο όριο ένταξης.

Ας φτιάξουμε ένα γράφημα και ας σχεδιάσουμε πάνω του τις γραμμές που δίνονται στη δήλωση προβλήματος.

Έχοντας το γράφημα μπροστά στα μάτια μας, μπορούμε εύκολα να προσδιορίσουμε ότι το κατώτερο όριο ολοκλήρωσης θα είναι η τετμημένη του σημείου τομής της γραφικής παράστασης της ευθείας y = x και της ημιπαραβολής y = x + 2. Για να βρούμε την τετμημένη χρησιμοποιούμε τις ισότητες:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Αποδεικνύεται ότι η τετμημένη του σημείου τομής είναι x = 2.

Εφιστούμε την προσοχή σας στο γεγονός ότι στο γενικό παράδειγμα του σχεδίου, οι ευθείες y = x + 2, y = x τέμνονται στο σημείο (2; 2), επομένως τέτοιοι λεπτομερείς υπολογισμοί μπορεί να φαίνονται περιττοί. Έχουμε δώσει μια τόσο λεπτομερή λύση εδώ μόνο επειδή σε πιο περίπλοκες περιπτώσεις η λύση μπορεί να μην είναι τόσο προφανής. Αυτό σημαίνει ότι είναι καλύτερο να υπολογίζουμε πάντα αναλυτικά τις συντεταγμένες της τομής των γραμμών.

Στο διάστημα [ 2 ; 7] η γραφική παράσταση της συνάρτησης y = x βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης y = x + 2. Ας εφαρμόσουμε τον τύπο για να υπολογίσουμε το εμβαδόν:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Απάντηση: S (G) = 59 6

Παράδειγμα 3

Είναι απαραίτητο να υπολογίσετε την περιοχή του σχήματος, η οποία περιορίζεται από τα γραφήματα των συναρτήσεων y = 1 x και y = - x 2 + 4 x - 2.

Λύση

Ας σχεδιάσουμε τις γραμμές στο γράφημα.

Ας ορίσουμε τα όρια της ολοκλήρωσης. Για να γίνει αυτό, προσδιορίζουμε τις συντεταγμένες των σημείων τομής των γραμμών εξισώνοντας τις παραστάσεις 1 x και - x 2 + 4 x - 2. Με την προϋπόθεση ότι το x δεν είναι μηδέν, η ισότητα 1 x = - x 2 + 4 x - 2 γίνεται ισοδύναμη με την εξίσωση τρίτου βαθμού - x 3 + 4 x 2 - 2 x - 1 = 0 με ακέραιους συντελεστές. Για να ανανεώσετε τη μνήμη σας σχετικά με τον αλγόριθμο για την επίλυση τέτοιων εξισώσεων, μπορούμε να ανατρέξουμε στην ενότητα «Επίλυση κυβικών εξισώσεων».

Η ρίζα αυτής της εξίσωσης είναι x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Διαιρώντας την παράσταση - x 3 + 4 x 2 - 2 x - 1 με το διώνυμο x - 1, παίρνουμε: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Μπορούμε να βρούμε τις υπόλοιπες ρίζες από την εξίσωση x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Βρήκαμε το διάστημα x ∈ 1; 3 + 13 2, στο οποίο το σχήμα G περιέχεται πάνω από τη μπλε και κάτω από την κόκκινη γραμμή. Αυτό μας βοηθά να προσδιορίσουμε την περιοχή του σχήματος:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Απάντηση: S (G) = 7 + 13 3 - ln 3 + 13 2

Παράδειγμα 4

Είναι απαραίτητο να υπολογιστεί η περιοχή του σχήματος, η οποία περιορίζεται από τις καμπύλες y = x 3, y = - log 2 x + 1 και τον άξονα της τετμημένης.

Λύση

Ας σχεδιάσουμε όλες τις γραμμές στο γράφημα. Μπορούμε να πάρουμε τη γραφική παράσταση της συνάρτησης y = - log 2 x + 1 από τη γραφική παράσταση y = log 2 x αν την τοποθετήσουμε συμμετρικά γύρω από τον άξονα x και την μετακινήσουμε μία μονάδα προς τα πάνω. Η εξίσωση του άξονα x είναι y = 0.

Ας σημειώσουμε τα σημεία τομής των ευθειών.

Όπως φαίνεται από το σχήμα, οι γραφικές παραστάσεις των συναρτήσεων y = x 3 και y = 0 τέμνονται στο σημείο (0; 0). Αυτό συμβαίνει επειδή x = 0 είναι η μόνη πραγματική ρίζα της εξίσωσης x 3 = 0.

x = 2 είναι η μόνη ρίζα της εξίσωσης - log 2 x + 1 = 0, άρα οι γραφικές παραστάσεις των συναρτήσεων y = - log 2 x + 1 και y = 0 τέμνονται στο σημείο (2; 0).

x = 1 είναι η μόνη ρίζα της εξίσωσης x 3 = - log 2 x + 1 . Από αυτή την άποψη, οι γραφικές παραστάσεις των συναρτήσεων y = x 3 και y = - log 2 x + 1 τέμνονται στο σημείο (1; 1). Η τελευταία πρόταση μπορεί να μην είναι προφανής, αλλά η εξίσωση x 3 = - log 2 x + 1 δεν μπορεί να έχει περισσότερες από μία ρίζες, καθώς η συνάρτηση y = x 3 είναι αυστηρά αύξουσα και η συνάρτηση y = - log 2 x + 1 είναι αυστηρά φθίνουσα.

Η περαιτέρω λύση περιλαμβάνει πολλές επιλογές.

Επιλογή 1

Μπορούμε να φανταστούμε το σχήμα G ως το άθροισμα δύο καμπυλόγραμμων τραπεζοειδών που βρίσκονται πάνω από τον άξονα x, το πρώτο από τα οποία βρίσκεται κάτω από τη μέση γραμμή στο τμήμα x ∈ 0. 1, και το δεύτερο είναι κάτω από την κόκκινη γραμμή στο τμήμα x ∈ 1. 2. Αυτό σημαίνει ότι η περιοχή θα είναι ίση με S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Επιλογή Νο. 2

Το σχήμα G μπορεί να αναπαρασταθεί ως η διαφορά δύο σχημάτων, το πρώτο από τα οποία βρίσκεται πάνω από τον άξονα x και κάτω από την μπλε γραμμή στο τμήμα x ∈ 0. 2, και το δεύτερο μεταξύ των κόκκινων και μπλε γραμμών στο τμήμα x ∈ 1; 2. Αυτό μας επιτρέπει να βρούμε την περιοχή ως εξής:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

Σε αυτή την περίπτωση, για να βρείτε την περιοχή θα πρέπει να χρησιμοποιήσετε έναν τύπο της μορφής S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. Στην πραγματικότητα, οι γραμμές που δέσμευαν το σχήμα μπορούν να αναπαρασταθούν ως συναρτήσεις του ορίσματος y.

Ας λύσουμε τις εξισώσεις y = x 3 και - log 2 x + 1 ως προς το x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Παίρνουμε την απαιτούμενη περιοχή:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Απάντηση: S (G) = 1 ln 2 - 1 4

Παράδειγμα 5

Είναι απαραίτητο να υπολογίσετε την περιοχή του σχήματος, η οποία περιορίζεται από τις γραμμές y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Λύση

Με κόκκινη γραμμή σχεδιάζουμε τη γραμμή που ορίζεται από τη συνάρτηση y = x. Σχεδιάζουμε τη γραμμή y = - 1 2 x + 4 με μπλε χρώμα και τη γραμμή y = 2 3 x - 3 με μαύρο.

Ας σημειώσουμε τα σημεία τομής.

Ας βρούμε τα σημεία τομής των γραφημάτων των συναρτήσεων y = x και y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 Έλεγχος: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 όχι Είναι η λύση της εξίσωσης x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 είναι η λύση της εξίσωσης ⇒ (4; 2) σημείο τομής i y = x και y = - 1 2 x + 4

Ας βρούμε το σημείο τομής των γραφημάτων των συναρτήσεων y = x και y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Έλεγχος: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 είναι η λύση της εξίσωσης ⇒ (9 ; 3) σημείο a s y = x και y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Δεν υπάρχει λύση στην εξίσωση

Ας βρούμε το σημείο τομής των ευθειών y = - 1 2 x + 4 και y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) σημείο τομής y = - 1 2 x + 4 και y = 2 3 x - 3

Μέθοδος Νο. 1

Ας φανταστούμε το εμβαδόν του επιθυμητού σχήματος ως το άθροισμα των εμβαδών των μεμονωμένων σχημάτων.

Τότε το εμβαδόν του σχήματος είναι:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Μέθοδος Νο. 2

Το εμβαδόν του αρχικού σχήματος μπορεί να αναπαρασταθεί ως το άθροισμα δύο άλλων σχημάτων.

Στη συνέχεια λύνουμε την εξίσωση της γραμμής σε σχέση με το x και μόνο μετά από αυτό εφαρμόζουμε τον τύπο για τον υπολογισμό της περιοχής του σχήματος.

y = x ⇒ x = y 2 κόκκινη γραμμή y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 μαύρη γραμμή y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Η περιοχή λοιπόν είναι:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 3 3 2 y + 9 2 - y 2 y y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Όπως μπορείτε να δείτε, οι τιμές είναι οι ίδιες.

Απάντηση: S (G) = 11 3

Αποτελέσματα

Για να βρούμε το εμβαδόν ενός σχήματος που περιορίζεται από δεδομένες γραμμές, πρέπει να κατασκευάσουμε γραμμές σε ένα επίπεδο, να βρούμε τα σημεία τομής τους και να εφαρμόσουμε τον τύπο για να βρούμε την περιοχή. Σε αυτήν την ενότητα, εξετάσαμε τις πιο συνηθισμένες παραλλαγές εργασιών.

Εάν παρατηρήσετε κάποιο σφάλμα στο κείμενο, επισημάνετε το και πατήστε Ctrl+Enter

Ορισμένο ολοκλήρωμα. Πώς να υπολογίσετε το εμβαδόν ενός σχήματος

Ας προχωρήσουμε στην εξέταση των εφαρμογών του ολοκληρωτικού λογισμού. Σε αυτό το μάθημα θα αναλύσουμε την τυπική και πιο συνηθισμένη εργασία – πώς να χρησιμοποιήσετε ένα καθορισμένο ολοκλήρωμα για τον υπολογισμό του εμβαδού ενός επίπεδου σχήματος. Τέλος, όσοι αναζητούν νόημα στα ανώτερα μαθηματικά - μακάρι να το βρουν. Ποτέ δεν ξέρεις. Στην πραγματική ζωή, θα πρέπει να προσεγγίσετε ένα οικόπεδο dacha χρησιμοποιώντας στοιχειώδεις συναρτήσεις και να βρείτε την περιοχή του χρησιμοποιώντας ένα συγκεκριμένο ολοκλήρωμα.

Για να κατακτήσετε με επιτυχία το υλικό, πρέπει:

1) Κατανοήστε το αόριστο ολοκλήρωμα τουλάχιστον σε ενδιάμεσο επίπεδο. Έτσι, τα ανδρείκελα θα πρέπει πρώτα να διαβάσουν το μάθημα Δεν.

2) Να είναι σε θέση να εφαρμόσει τον τύπο Newton-Leibniz και να υπολογίσει το οριστικό ολοκλήρωμα. Μπορείτε να δημιουργήσετε ζεστές φιλικές σχέσεις με ορισμένα ολοκληρώματα στη σελίδα Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεων.

Στην πραγματικότητα, για να βρείτε το εμβαδόν ενός σχήματος, δεν χρειάζεστε τόση γνώση του αόριστου και ορισμένου ολοκληρώματος. Η εργασία "υπολογισμός του εμβαδού χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα" περιλαμβάνει πάντα την κατασκευή ενός σχεδίου, έτσι οι γνώσεις και οι δεξιότητές σας στο σχέδιο θα είναι ένα πολύ πιο πιεστικό ζήτημα. Από αυτή την άποψη, είναι χρήσιμο να ανανεώσετε τη μνήμη σας από τα γραφήματα των βασικών στοιχειωδών συναρτήσεων και, τουλάχιστον, να μπορείτε να κατασκευάσετε μια ευθεία γραμμή, παραβολή και υπερβολή. Αυτό μπορεί να γίνει (για πολλούς είναι απαραίτητο) με τη βοήθεια μεθοδολογικού υλικού και ενός άρθρου για γεωμετρικούς μετασχηματισμούς γραφημάτων.

Στην πραγματικότητα, όλοι είναι εξοικειωμένοι με το έργο της εύρεσης της περιοχής χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα από το σχολείο, και δεν θα προχωρήσουμε πολύ περισσότερο από το σχολικό πρόγραμμα σπουδών. Αυτό το άρθρο μπορεί να μην υπήρχε καθόλου, αλλά το γεγονός είναι ότι το πρόβλημα εμφανίζεται σε 99 περιπτώσεις στις 100, όταν ένας μαθητής υποφέρει από ένα μισητό σχολείο και κατέχει με ενθουσιασμό ένα μάθημα στα ανώτερα μαθηματικά.

Τα υλικά αυτού του εργαστηρίου παρουσιάζονται απλά, αναλυτικά και με ελάχιστη θεωρία.

Ας ξεκινήσουμε με ένα καμπύλο τραπεζοειδές.

Καμπυλόγραμμο τραπεζοειδέςείναι ένα επίπεδο σχήμα που οριοθετείται από έναν άξονα, ευθείες γραμμές και τη γραφική παράσταση μιας συνάρτησης συνεχούς σε ένα διάστημα που δεν αλλάζει πρόσημο σε αυτό το διάστημα. Αφήστε αυτό το σχήμα να εντοπιστεί όχι λιγότεροάξονας x:

Επειτα το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς είναι αριθμητικά ίσο με ένα ορισμένο ολοκλήρωμα. Οποιοδήποτε οριστικό ολοκλήρωμα (που υπάρχει) έχει πολύ καλή γεωμετρική σημασία. Στο μάθημα Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεωνΕίπα ότι οριστικό ολοκλήρωμα είναι ένας αριθμός. Και τώρα ήρθε η ώρα να αναφέρουμε ένα άλλο χρήσιμο γεγονός. Από την άποψη της γεωμετρίας, το οριστικό ολοκλήρωμα είναι ΠΕΡΙΟΧΗ.

Αυτό είναι, το οριστικό ολοκλήρωμα (αν υπάρχει) αντιστοιχεί γεωμετρικά στο εμβαδόν ενός συγκεκριμένου σχήματος. Για παράδειγμα, θεωρήστε το οριστικό ολοκλήρωμα. Το ολοκλήρωμα ορίζει μια καμπύλη στο επίπεδο που βρίσκεται πάνω από τον άξονα (όσοι επιθυμούν μπορούν να κάνουν ένα σχέδιο) και το ίδιο το καθορισμένο ολοκλήρωμα είναι αριθμητικά ίσο με το εμβαδόν του αντίστοιχου καμπυλόγραμμου τραπεζοειδούς.

Παράδειγμα 1

Αυτή είναι μια τυπική δήλωση ανάθεσης. Το πρώτο και πιο σημαντικό σημείο στην απόφαση είναι η κατασκευή ενός σχεδίου. Επιπλέον, το σχέδιο πρέπει να κατασκευαστεί ΣΩΣΤΑ.

Κατά την κατασκευή ενός σχεδίου, προτείνω την ακόλουθη σειρά: αρχικάείναι προτιμότερο να κατασκευάζονται όλες οι ευθείες (αν υπάρχουν) και μόνο Επειτα– παραβολές, υπερβολές, γραφικές παραστάσεις άλλων συναρτήσεων. Είναι πιο κερδοφόρο να δημιουργείτε γραφήματα συναρτήσεων σημείο προς σημείο, η τεχνική κατασκευής σημείο προς σημείο βρίσκεται στο υλικό αναφοράς Γραφήματα και ιδιότητες στοιχειωδών συναρτήσεων. Εκεί μπορείτε επίσης να βρείτε πολύ χρήσιμο υλικό για το μάθημά μας - πώς να φτιάξετε γρήγορα μια παραβολή.

Σε αυτό το πρόβλημα, η λύση μπορεί να μοιάζει με αυτό.
Ας σχεδιάσουμε το σχέδιο (σημειώστε ότι η εξίσωση ορίζει τον άξονα):


Δεν θα σκιάσω το καμπύλο τραπεζοειδές είναι προφανές εδώ για ποια περιοχή μιλάμε. Η λύση συνεχίζεται ως εξής:

Στο τμήμα, βρίσκεται το γράφημα της συνάρτησης πάνω από τον άξονα, Να γιατί:

Απάντηση:

Ποιος έχει δυσκολίες με τον υπολογισμό του οριστικού ολοκληρώματος και την εφαρμογή του τύπου Newton-Leibniz , ανατρέξτε στη διάλεξη Ορισμένο ολοκλήρωμα. Παραδείγματα λύσεων.

Αφού ολοκληρωθεί η εργασία, είναι πάντα χρήσιμο να κοιτάξετε το σχέδιο και να καταλάβετε εάν η απάντηση είναι πραγματική. Σε αυτή την περίπτωση, μετράμε τον αριθμό των κελιών στο σχέδιο "με το μάτι" - καλά, θα είναι περίπου 9, κάτι που φαίνεται να είναι αλήθεια. Είναι απολύτως σαφές ότι αν λάβαμε, ας πούμε, την απάντηση: 20 τετραγωνικές μονάδες, τότε είναι προφανές ότι κάπου έγινε ένα λάθος - 20 κελιά προφανώς δεν χωρούν στο εν λόγω σχήμα, το πολύ μια ντουζίνα. Εάν η απάντηση είναι αρνητική, τότε η εργασία λύθηκε επίσης εσφαλμένα.

Παράδειγμα 2

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές , και άξονα

Αυτό είναι ένα παράδειγμα για να το λύσετε μόνοι σας. Πλήρης λύση και απάντηση στο τέλος του μαθήματος.

Τι να κάνετε εάν βρίσκεται το καμπύλο τραπεζοειδές κάτω από τον άξονα;

Παράδειγμα 3

Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από γραμμές και άξονες συντεταγμένων.

Λύση: Ας κάνουμε ένα σχέδιο:

Αν εντοπίζεται καμπύλο τραπεζοειδές κάτω από τον άξονα(ή τουλάχιστον όχι υψηλότεραδεδομένου άξονα), τότε η περιοχή του μπορεί να βρεθεί χρησιμοποιώντας τον τύπο:
Σε αυτήν την περίπτωση:

Προσοχή! Οι δύο τύποι εργασιών δεν πρέπει να συγχέονται:

1) Αν σας ζητηθεί να λύσετε απλώς ένα οριστικό ολοκλήρωμα χωρίς γεωμετρική σημασία, τότε μπορεί να είναι αρνητικό.

2) Εάν σας ζητηθεί να βρείτε το εμβαδόν ενός σχήματος χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα, τότε το εμβαδόν είναι πάντα θετικό! Αυτός είναι ο λόγος για τον οποίο το μείον εμφανίζεται στον τύπο που μόλις συζητήθηκε.

Στην πράξη, τις περισσότερες φορές το σχήμα βρίσκεται τόσο στο άνω όσο και στο κάτω ημιεπίπεδο, και ως εκ τούτου, από τα απλούστερα σχολικά προβλήματα προχωράμε σε πιο ουσιαστικά παραδείγματα.

Παράδειγμα 4

Βρείτε το εμβαδόν ενός επίπεδου σχήματος που οριοθετείται από τις γραμμές, .

Λύση: Πρώτα πρέπει να ολοκληρώσετε το σχέδιο. Γενικά, όταν κατασκευάζουμε ένα σχέδιο σε προβλήματα περιοχής, μας ενδιαφέρουν περισσότερο τα σημεία τομής των γραμμών. Ας βρούμε τα σημεία τομής της παραβολής και της ευθείας. Αυτό μπορεί να γίνει με δύο τρόπους. Η πρώτη μέθοδος είναι αναλυτική. Λύνουμε την εξίσωση:

Αυτό σημαίνει ότι το κατώτερο όριο ολοκλήρωσης είναι, το ανώτερο όριο ολοκλήρωσης είναι.
Εάν είναι δυνατόν, είναι καλύτερα να μην χρησιμοποιήσετε αυτήν τη μέθοδο..

Είναι πολύ πιο επικερδές και πιο γρήγορο να κατασκευάζονται γραμμές σημείο προς σημείο και τα όρια της ολοκλήρωσης γίνονται ξεκάθαρα «από μόνα τους». Η τεχνική κατασκευής σημείο προς σημείο για διάφορα γραφήματα συζητείται λεπτομερώς στη βοήθεια Γραφήματα και ιδιότητες στοιχειωδών συναρτήσεων. Ωστόσο, η αναλυτική μέθοδος εύρεσης ορίων πρέπει να χρησιμοποιείται μερικές φορές εάν, για παράδειγμα, το γράφημα είναι αρκετά μεγάλο ή η λεπτομερής κατασκευή δεν αποκάλυψε τα όρια της ολοκλήρωσης (μπορεί να είναι κλασματικά ή παράλογα). Και θα εξετάσουμε επίσης ένα τέτοιο παράδειγμα.

Ας επιστρέψουμε στο καθήκον μας: είναι πιο λογικό να κατασκευάσουμε πρώτα μια ευθεία γραμμή και μόνο μετά μια παραβολή. Ας κάνουμε το σχέδιο:

Επαναλαμβάνω ότι κατά την κατασκευή σημειακών, τα όρια της ολοκλήρωσης ανακαλύπτονται τις περισσότερες φορές «αυτόματα».

Και τώρα η φόρμουλα εργασίας: Εάν υπάρχει κάποια συνεχής συνάρτηση στο τμήμα μεγαλύτερο ή ίσο μεκάποια συνεχή συνάρτηση , τότε η περιοχή του σχήματος που οριοθετείται από τα γραφήματα αυτών των συναρτήσεων και τις γραμμές , , μπορεί να βρεθεί χρησιμοποιώντας τον τύπο:

Εδώ δεν χρειάζεται πλέον να σκέφτεστε πού βρίσκεται η φιγούρα - πάνω από τον άξονα ή κάτω από τον άξονα και, χοντρικά, σημασία έχει ποιο γράφημα είναι ΥΨΗΛΟΤΕΡΟ(σε σχέση με άλλο γράφημα), και ποιο είναι ΠΑΡΑΚΑΤΩ.

Στο υπό εξέταση παράδειγμα, είναι προφανές ότι στο τμήμα η παραβολή βρίσκεται πάνω από την ευθεία γραμμή, και επομένως είναι απαραίτητο να αφαιρεθεί από

Η ολοκληρωμένη λύση μπορεί να μοιάζει με αυτό:

Το επιθυμητό σχήμα περιορίζεται από μια παραβολή πάνω και μια ευθεία γραμμή κάτω.
Στο τμήμα, σύμφωνα με τον αντίστοιχο τύπο:

Απάντηση:

Στην πραγματικότητα, ο σχολικός τύπος για το εμβαδόν ενός καμπυλόγραμμου τραπεζοειδούς στο κάτω μισό επίπεδο (βλ. απλό παράδειγμα Νο. 3) είναι μια ειδική περίπτωση του τύπου . Δεδομένου ότι ο άξονας καθορίζεται από την εξίσωση, και το γράφημα της συνάρτησης βρίσκεται όχι υψηλότερατσεκούρια, λοιπόν

Και τώρα μερικά παραδείγματα για τη δική σας λύση

Παράδειγμα 5

Παράδειγμα 6

Βρείτε το εμβαδόν του σχήματος που οριοθετείται από τις γραμμές, .

Κατά την επίλυση προβλημάτων που αφορούν τον υπολογισμό της περιοχής χρησιμοποιώντας ένα καθορισμένο ολοκλήρωμα, μερικές φορές συμβαίνει ένα αστείο περιστατικό. Το σχέδιο έγινε σωστά, οι υπολογισμοί ήταν σωστοί, αλλά από απροσεξία... βρέθηκε η περιοχή της λάθος φιγούρας, έτσι ακριβώς τα χάλασε πολλές φορές ο ταπεινός σου υπηρέτης. Εδώ είναι μια πραγματική περίπτωση:

Παράδειγμα 7

Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις γραμμές , , , .

Λύση: Αρχικά, ας κάνουμε ένα σχέδιο:

...Ε, το σχέδιο βγήκε χάλια, αλλά όλα δείχνουν να είναι ευανάγνωστα.

Η φιγούρα της οποίας η περιοχή πρέπει να βρούμε είναι σκιασμένη με μπλε(κοιτάξτε προσεκτικά την κατάσταση - πώς είναι περιορισμένος ο αριθμός!). Αλλά στην πράξη, λόγω απροσεξίας, εμφανίζεται συχνά ένα «σφάλμα» που πρέπει να βρείτε την περιοχή μιας φιγούρας που είναι σκιασμένη με πράσινο χρώμα!

Αυτό το παράδειγμα είναι επίσης χρήσιμο στο ότι υπολογίζει το εμβαδόν ενός σχήματος χρησιμοποιώντας δύο καθορισμένα ολοκληρώματα. Πραγματικά:

1) Στο τμήμα πάνω από τον άξονα υπάρχει ένα γράφημα μιας ευθείας γραμμής.

2) Στο τμήμα πάνω από τον άξονα υπάρχει μια γραφική παράσταση μιας υπερβολής.

Είναι προφανές ότι οι περιοχές μπορούν (και πρέπει) να προστεθούν, επομένως:

Απάντηση:

Ας προχωρήσουμε σε ένα άλλο ουσιαστικό έργο.

Παράδειγμα 8

Υπολογίστε το εμβαδόν ενός σχήματος που οριοθετείται από γραμμές,
Ας παρουσιάσουμε τις εξισώσεις σε «σχολική» μορφή και ας κάνουμε ένα σχέδιο σημείο προς σημείο:

Από το σχέδιο είναι ξεκάθαρο ότι το ανώτερο όριο μας είναι «καλό»: .
Ποιο είναι όμως το κατώτερο όριο;! Είναι σαφές ότι αυτό δεν είναι ακέραιος, αλλά τι είναι; Μπορεί ; Αλλά πού είναι η εγγύηση ότι το σχέδιο γίνεται με τέλεια ακρίβεια, μπορεί κάλλιστα να αποδειχθεί ότι... Ή τη ρίζα. Τι γίνεται αν κατασκευάσαμε λάθος το γράφημα;

Σε τέτοιες περιπτώσεις, πρέπει να αφιερώσετε επιπλέον χρόνο και να ξεκαθαρίσετε αναλυτικά τα όρια της ολοκλήρωσης.

Ας βρούμε τα σημεία τομής μιας ευθείας γραμμής και μιας παραβολής.
Για να γίνει αυτό, λύνουμε την εξίσωση:


,

Πραγματικά, .

Η περαιτέρω λύση είναι ασήμαντη, το κύριο πράγμα είναι να μην μπερδεύεστε στις αντικαταστάσεις και τα σημάδια οι υπολογισμοί εδώ δεν είναι οι απλούστεροι.

Στο τμήμα , σύμφωνα με τον αντίστοιχο τύπο:

Απάντηση:

Λοιπόν, για να ολοκληρώσουμε το μάθημα, ας δούμε δύο πιο δύσκολες εργασίες.

Παράδειγμα 9

Υπολογίστε το εμβαδόν του σχήματος που οριοθετείται από τις γραμμές ,

Λύση: Ας απεικονίσουμε αυτή τη φιγούρα στο σχέδιο.

Διάολε, ξέχασα να υπογράψω το πρόγραμμα και, συγγνώμη, δεν ήθελα να ξανακάνω την εικόνα. Δεν είναι μέρα ζωγραφικής, με λίγα λόγια, σήμερα είναι η μέρα =)

Για την κατασκευή σημείο προς σημείο, είναι απαραίτητο να γνωρίζουμε την εμφάνιση ενός ημιτονοειδούς (και γενικά είναι χρήσιμο να γνωρίζουμε γραφήματα όλων των βασικών συναρτήσεων), καθώς και ορισμένες ημιτονοειδείς τιμές, μπορούν να βρεθούν σε τριγωνομετρικός πίνακας. Σε ορισμένες περιπτώσεις (όπως σε αυτήν την περίπτωση), είναι δυνατή η κατασκευή ενός σχηματικού σχεδίου, στο οποίο τα γραφήματα και τα όρια ολοκλήρωσης θα πρέπει να εμφανίζονται βασικά σωστά.

Δεν υπάρχουν προβλήματα με τα όρια της ολοκλήρωσης εδώ. Ας πάρουμε μια περαιτέρω απόφαση:

Στο τμήμα, η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, επομένως:

Οδηγίες

Είναι βολικό να ενεργήσετε εάν η φιγούρα σας είναι πολύγωνο. Μπορείτε πάντα να το αναλύσετε σε έναν πεπερασμένο αριθμό και χρειάζεται να θυμάστε μόνο έναν τύπο - το εμβαδόν ενός τριγώνου. Έτσι, ένα τρίγωνο είναι το μισό του γινόμενου του μήκους της πλευράς του και του μήκους του υψομέτρου που τραβιέται σε αυτήν ακριβώς την πλευρά. Συνοψίζοντας τα εμβαδά των μεμονωμένων τριγώνων στα οποία έχει μετατραπεί ένα πιο σύνθετο τρίγωνο με τη θέλησή σας, θα μάθετε το επιθυμητό αποτέλεσμα.

Είναι πιο δύσκολο να λυθεί το πρόβλημα του προσδιορισμού της περιοχής ενός αυθαίρετου σχήματος. Ένα τέτοιο σχήμα μπορεί να έχει όχι μόνο αλλά και καμπύλα όρια. Υπάρχουν τρόποι για να κάνετε έναν κατά προσέγγιση υπολογισμό. Απλός.

Αρχικά, μπορείτε να χρησιμοποιήσετε μια παλέτα. Αυτό είναι ένα όργανο κατασκευασμένο από διαφανές υλικό με ένα πλέγμα τετραγώνων ή τριγώνων με γνωστή περιοχή που εφαρμόζεται στην επιφάνειά του. Τοποθετώντας την παλέτα πάνω από το σχήμα για το οποίο αναζητάτε την περιοχή, υπολογίζετε εκ νέου τον αριθμό των μονάδων μέτρησής σας που επικαλύπτουν την εικόνα. Συνδυάστε ημιτελώς κλειστές μονάδες μέτρησης μεταξύ τους, συμπληρώνοντάς τες στο μυαλό σας για να ολοκληρώσετε. Στη συνέχεια, πολλαπλασιάζοντας την περιοχή ενός σχήματος παλέτας με τον αριθμό που υπολογίσατε, θα μάθετε την κατά προσέγγιση περιοχή του αυθαίρετου σχήματός σας. Είναι σαφές ότι όσο πιο πυκνό είναι το πλέγμα στην παλέτα σας, τόσο πιο ακριβές είναι το αποτέλεσμά σας.

Δεύτερον, μπορείτε να περιγράψετε τον μέγιστο αριθμό τριγώνων εντός των ορίων ενός αυθαίρετου σχήματος για το οποίο προσδιορίζετε την περιοχή. Προσδιορίστε το εμβαδόν του καθενός και προσθέστε τα εμβαδά του. Αυτό θα είναι ένα πολύ τραχύ αποτέλεσμα. Εάν θέλετε, μπορείτε επίσης να προσδιορίσετε χωριστά την περιοχή των τμημάτων που οριοθετούνται από τα τόξα. Για να το κάνετε αυτό, φανταστείτε ότι το τμήμα είναι μέρος ενός κύκλου. Κατασκευάστε αυτόν τον κύκλο και, στη συνέχεια, από το κέντρο του τραβήξτε ακτίνες στις άκρες του τόξου. Τα τμήματα σχηματίζουν μια γωνία α μεταξύ τους. Η περιοχή ολόκληρου του τομέα καθορίζεται από τον τύπο π*R^2*α/360. Για κάθε μικρότερο μέρος της φιγούρας σας, προσδιορίζετε την περιοχή και παίρνετε το συνολικό αποτέλεσμα αθροίζοντας τις τιμές που προκύπτουν.

Η τρίτη μέθοδος είναι πιο δύσκολη, αλλά πιο ακριβής και για κάποιους, πιο εύκολη. Το εμβαδόν οποιουδήποτε αριθμού μπορεί να προσδιοριστεί χρησιμοποιώντας ολοκληρωτικό λογισμό. Το οριστικό ολοκλήρωμα μιας συνάρτησης δείχνει το εμβαδόν από τη γραφική παράσταση της συνάρτησης μέχρι την τετμημένη. Η περιοχή που περικλείεται μεταξύ δύο γραφημάτων μπορεί να προσδιοριστεί αφαιρώντας ένα ορισμένο ολοκλήρωμα, με μικρότερη τιμή, από ένα ολοκλήρωμα εντός των ίδιων ορίων, αλλά με μεγαλύτερη τιμή. Για να χρησιμοποιήσετε αυτήν τη μέθοδο, είναι βολικό να μεταφέρετε το αυθαίρετο σχήμα σας σε ένα σύστημα συντεταγμένων και στη συνέχεια να καθορίσετε τις συναρτήσεις τους και να ενεργήσετε χρησιμοποιώντας τις μεθόδους ανώτερων μαθηματικών, στις οποίες δεν θα εμβαθύνουμε εδώ και τώρα.

Εμβαδόν γεωμετρικού σχήματος- ένα αριθμητικό χαρακτηριστικό ενός γεωμετρικού σχήματος που δείχνει το μέγεθος αυτού του σχήματος (τμήμα της επιφάνειας που περιορίζεται από το κλειστό περίγραμμα αυτού του σχήματος). Το μέγεθος του εμβαδού εκφράζεται με τον αριθμό των τετραγωνικών μονάδων που περιέχονται σε αυτό.

Τύποι τριγωνικού εμβαδού

  1. Τύπος για το εμβαδόν ενός τριγώνου δίπλα και το ύψος
    Εμβαδόν τριγώνουίσο με το μισό του γινόμενου του μήκους μιας πλευράς ενός τριγώνου και του μήκους του υψομέτρου που τραβιέται σε αυτήν την πλευρά
  2. Τύπος για το εμβαδόν ενός τριγώνου που βασίζεται σε τρεις πλευρές και την ακτίνα του κυκλικού κύκλου
  3. Τύπος για το εμβαδόν ενός τριγώνου που βασίζεται σε τρεις πλευρές και την ακτίνα του εγγεγραμμένου κύκλου
    Εμβαδόν τριγώνουισούται με το γινόμενο της ημιπεριμέτρου του τριγώνου και της ακτίνας του εγγεγραμμένου κύκλου.
  4. όπου S είναι το εμβαδόν του τριγώνου,
    - τα μήκη των πλευρών του τριγώνου,
    - ύψος του τριγώνου,
    - η γωνία μεταξύ των πλευρών και,
    - ακτίνα του εγγεγραμμένου κύκλου,
    R - ακτίνα του περιγεγραμμένου κύκλου,

Τύποι τετραγωνικού εμβαδού

  1. Τύπος για το εμβαδόν ενός τετραγώνου κατά μήκος της πλευράς
    Τετράγωνη έκτασηίσο με το τετράγωνο του μήκους της πλευράς του.
  2. Τύπος για το εμβαδόν ενός τετραγώνου κατά μήκος της διαγώνιας
    Τετράγωνη έκτασηίσο με το μισό του τετραγώνου του μήκους της διαγωνίου του.
    S=1 2
    2
  3. όπου S είναι το εμβαδόν του τετραγώνου,
    - μήκος της πλευράς του τετραγώνου,
    - μήκος της διαγωνίου του τετραγώνου.

Τύπος ορθογώνιου εμβαδού

    Εμβαδόν ορθογωνίουίσο με το γινόμενο των μηκών των δύο διπλανών πλευρών του

    όπου S είναι το εμβαδόν του ορθογωνίου,
    - μήκη των πλευρών του ορθογωνίου.

Τύποι εμβαδού παραλληλογράμμου

  1. Τύπος για το εμβαδόν ενός παραλληλογράμμου με βάση το μήκος και το ύψος της πλευράς
    Εμβαδόν παραλληλογράμμου
  2. Τύπος για το εμβαδόν ενός παραλληλογράμμου με βάση δύο πλευρές και τη γωνία μεταξύ τους
    Εμβαδόν παραλληλογράμμουισούται με το γινόμενο των μηκών των πλευρών του πολλαπλασιασμένο επί το ημίτονο της μεταξύ τους γωνίας.

    a b sin α

  3. όπου S είναι το εμβαδόν του παραλληλογράμμου,
    - τα μήκη των πλευρών του παραλληλογράμμου,
    - μήκος παραλληλογράμμου ύψους,
    - η γωνία μεταξύ των πλευρών του παραλληλογράμμου.

Τύποι για την περιοχή ενός ρόμβου

  1. Τύπος για το εμβαδόν ενός ρόμβου με βάση το μήκος και το ύψος της πλευράς
    Περιοχή ρόμβουίσο με το γινόμενο του μήκους της πλευράς του και το μήκος του ύψους που έχει χαμηλώσει σε αυτήν την πλευρά.
  2. Τύπος για το εμβαδόν ενός ρόμβου με βάση το μήκος και τη γωνία της πλευράς
    Περιοχή ρόμβουείναι ίσο με το γινόμενο του τετραγώνου του μήκους της πλευράς του και του ημιτόνου της γωνίας μεταξύ των πλευρών του ρόμβου.
  3. Τύπος για το εμβαδόν ενός ρόμβου με βάση τα μήκη των διαγωνίων του
    Περιοχή ρόμβουίσο με το μισό του γινόμενου των μηκών των διαγωνίων του.
  4. όπου S είναι το εμβαδόν του ρόμβου,
    - μήκος της πλευράς του ρόμβου,
    - μήκος του ύψους του ρόμβου,
    - η γωνία μεταξύ των πλευρών του ρόμβου,
    1, 2 - μήκη διαγωνίων.

Τύποι τραπεζοειδούς περιοχής

  1. Ο τύπος του Heron για το τραπεζοειδές

    Όπου S είναι το εμβαδόν του τραπεζοειδούς,
    - τα μήκη των βάσεων του τραπεζοειδούς,
    - τα μήκη των πλευρών του τραπεζοειδούς,

Στη γεωμετρία, το εμβαδόν ενός σχήματος είναι ένα από τα κύρια αριθμητικά χαρακτηριστικά ενός επίπεδου σώματος. Τι είναι η περιοχή, πώς να την προσδιορίσετε για διάφορα στοιχεία, καθώς και ποιες ιδιότητες έχει - θα εξετάσουμε όλες αυτές τις ερωτήσεις σε αυτό το άρθρο.

Τι είναι περιοχή: ορισμός

Το εμβαδόν ενός σχήματος είναι ο αριθμός των τετραγώνων μονάδας σε αυτό το σχήμα. ανεπίσημα μιλώντας, αυτό είναι το μέγεθος του σχήματος. Τις περισσότερες φορές, η περιοχή ενός σχήματος συμβολίζεται ως "S". Μπορεί να μετρηθεί χρησιμοποιώντας μια παλέτα ή ένα επιπεδόμετρο. Μπορείτε επίσης να υπολογίσετε το εμβαδόν ενός σχήματος γνωρίζοντας τις βασικές του διαστάσεις. Για παράδειγμα, το εμβαδόν ενός τριγώνου μπορεί να υπολογιστεί χρησιμοποιώντας τρεις διαφορετικούς τύπους:

Το εμβαδόν ενός ορθογωνίου είναι ίσο με το γινόμενο του πλάτους του κατά το μήκος του και το εμβαδόν ενός κύκλου είναι ίσο με το γινόμενο του τετραγώνου της ακτίνας και του αριθμού π = 3,14.

Ιδιότητες του εμβαδού ενός σχήματος

  • το εμβαδόν είναι ίσο για ίσα ψηφία.
  • Η περιοχή είναι πάντα μη αρνητική.
  • Η μονάδα μέτρησης για το εμβαδόν είναι το εμβαδόν ενός τετραγώνου με πλευρά ίση με 1 μονάδα μήκους.
  • εάν ένα σχήμα χωρίζεται σε δύο μέρη, τότε το συνολικό εμβαδόν του σχήματος είναι ίσο με το άθροισμα των εμβαδών των τμημάτων του.
  • Οι αριθμοί ίσοι σε εμβαδόν ονομάζονται ίσοι σε εμβαδόν.
  • αν μια φιγούρα ανήκει σε μια άλλη φιγούρα, τότε η περιοχή της πρώτης δεν μπορεί να υπερβαίνει την περιοχή της δεύτερης.