Stairs.  Entry group.  Materials.  Doors.  Locks.  Design

Stairs. Entry group. Materials. Doors. Locks. Design

» How to find out whether a function is even or not. Even and odd functions

How to find out whether a function is even or not. Even and odd functions

Which were familiar to you to one degree or another. It was also noted there that the stock of function properties will be gradually replenished. Two new properties will be discussed in this section.

Definition 1.

The function y = f(x), x є X, is called even if for any value x from the set X the equality f (-x) = f (x) holds.

Definition 2.

The function y = f(x), x є X, is called odd if for any value x from the set X the equality f (-x) = -f (x) holds.

Prove that y = x 4 - even function.

Solution. We have: f(x) = x 4, f(-x) = (-x) 4. But(-x) 4 = x 4. This means that for any x the equality f(-x) = f(x) holds, i.e. the function is even.

Similarly, it can be proven that the functions y - x 2, y = x 6, y - x 8 are even.

Prove that y = x 3 ~ an odd function.

Solution. We have: f(x) = x 3, f(-x) = (-x) 3. But (-x) 3 = -x 3. This means that for any x the equality f (-x) = -f (x) holds, i.e. the function is odd.

Similarly, it can be proven that the functions y = x, y = x 5, y = x 7 are odd.

You and I have already been convinced more than once that new terms in mathematics most often have an “earthly” origin, i.e. they can be explained somehow. This is the case with both even and odd functions. See: y - x 3, y = x 5, y = x 7 - odd functions, while y = x 2, y = x 4, y = x 6 are even functions. And in general, for any function of the form y = x" (below we will specifically study these functions), where n is a natural number, we can conclude: if n is an odd number, then the function y = x" is odd; if n is an even number, then the function y = xn is even.

There are also functions that are neither even nor odd. Such, for example, is the function y = 2x + 3. Indeed, f(1) = 5, and f (-1) = 1. As you can see, here, therefore, neither the identity f(-x) = f ( x), nor the identity f(-x) = -f(x).

So, a function can be even, odd, or neither.

Studying the question of whether given function even or odd is usually called the study of a function for parity.

In definitions 1 and 2 we're talking about about the values ​​of the function at points x and -x. This assumes that the function is defined at both point x and point -x. This means that point -x belongs to the domain of definition of the function simultaneously with point x. If a numerical set X, together with each of its elements x, also contains the opposite element -x, then X is called a symmetric set. Let's say (-2, 2), [-5, 5], (-oo, +oo) are symmetric sets, while: let x 1a;b, A x 2a;b .

How to insert mathematical formulas on a website?

If you ever need to add one or two mathematical formulas to a web page, then the easiest way to do this is as described in the article: mathematical formulas are easily inserted onto the site in the form of pictures that are automatically generated by Wolfram Alpha. In addition to simplicity, this universal method will help improve the visibility of the site in search engines. It has been working for a long time (and, I think, will work forever), but is already morally outdated.

If you regularly use mathematical formulas on your site, then I recommend you use MathJax - a special JavaScript library that displays mathematical notation in web browsers using MathML, LaTeX or ASCIIMathML markup.

There are two ways to start using MathJax: (1) using a simple code, you can quickly connect a MathJax script to your website, which will be automatically loaded from a remote server at the right time (list of servers); (2) download the MathJax script from a remote server to your server and connect it to all pages of your site. The second method - more complex and time-consuming - will speed up the loading of your site's pages, and if the parent MathJax server becomes temporarily unavailable for some reason, this will not affect your own site in any way. Despite these advantages, I chose the first method as it is simpler, faster and does not require technical skills. Follow my example, and in just 5 minutes you will be able to use all the features of MathJax on your site.

You can connect the MathJax library script from a remote server using two code options taken from the main MathJax website or on the documentation page:

One of these code options needs to be copied and pasted into the code of your web page, preferably between tags and or immediately after the tag. According to the first option, MathJax loads faster and slows down the page less. But the second option automatically monitors and loads the latest versions of MathJax. If you insert the first code, it will need to be updated periodically. If you insert the second code, the pages will load more slowly, but you will not need to constantly monitor MathJax updates.

The easiest way to connect MathJax is in Blogger or WordPress: in the site control panel, add a widget designed to insert third-party JavaScript code, copy the first or second version of the download code presented above into it, and place the widget closer to the beginning of the template (by the way, this is not at all necessary , since the MathJax script is loaded asynchronously). That's all. Now learn the markup syntax of MathML, LaTeX, and ASCIIMathML, and you are ready to insert mathematical formulas into your site's web pages.

Any fractal is constructed according to a certain rule, which is consistently applied an unlimited number of times. Each such time is called an iteration.

The iterative algorithm for constructing a Menger sponge is quite simple: the original cube with side 1 is divided by planes parallel to its faces into 27 equal cubes. One central cube and 6 cubes adjacent to it along the faces are removed from it. The result is a set consisting of the remaining 20 smaller cubes. Doing the same with each of these cubes, we get a set consisting of 400 smaller cubes. Continuing this process endlessly, we get a Menger sponge.