Stairs.  Entry group.  Materials.  Doors.  Locks.  Design

Stairs. Entry group. Materials. Doors. Locks. Design

» Logarithmic inequalities. The Comprehensive Guide (2019). Solving logarithmic inequalities

Logarithmic inequalities. The Comprehensive Guide (2019). Solving logarithmic inequalities

Maintaining your privacy is important to us. For this reason, we have developed a Privacy Policy that describes how we use and store your information. Please review our privacy practices and let us know if you have any questions.

Collection and use of personal information

Personal information refers to data that can be used to identify or contact a specific person.

You may be asked to provide your personal information at any time when you contact us.

Below are some examples of the types of personal information we may collect and how we may use such information.

What personal information do we collect:

  • When you submit an application on the site, we may collect various information, including your name, telephone number, address Email etc.

How we use your personal information:

  • Collected by us personal information allows us to contact you and inform you about unique offers, promotions and other events and upcoming events.
  • From time to time, we may use your personal information to send important notices and communications.
  • We may also use personal information for internal purposes, such as conducting audits, data analysis and various research in order to improve the services we provide and provide you with recommendations regarding our services.
  • If you participate in a prize draw, contest or similar promotion, we may use the information you provide to administer such programs.

Disclosure of information to third parties

We do not disclose the information received from you to third parties.

Exceptions:

  • If necessary - in accordance with the law, judicial procedure, legal proceedings, and/or based on public requests or requests from government agencies on the territory of the Russian Federation - disclose your personal information. We may also disclose information about you if we determine that such disclosure is necessary or appropriate for security, law enforcement, or other public importance purposes.
  • In the event of a reorganization, merger, or sale, we may transfer the personal information we collect to the applicable successor third party.

Protection of personal information

We take precautions - including administrative, technical and physical - to protect your personal information from loss, theft, and misuse, as well as unauthorized access, disclosure, alteration and destruction.

Respecting your privacy at the company level

To ensure that your personal information is secure, we communicate privacy and security standards to our employees and strictly enforce privacy practices.

An inequality is called logarithmic if it contains a logarithmic function.

Methods for solving logarithmic inequalities are no different from, except for two things.

Firstly, when moving from the logarithmic inequality to the inequality of sublogarithmic functions, one should follow the sign of the resulting inequality. It obeys the following rule.

If the base of the logarithmic function is greater than $1$, then when moving from the logarithmic inequality to the inequality of sublogarithmic functions, the sign of the inequality is preserved, but if it is less than $1$, then it changes to the opposite.

Secondly, the solution to any inequality is an interval, and, therefore, at the end of solving the inequality of sublogarithmic functions it is necessary to create a system of two inequalities: the first inequality of this system will be the inequality of sublogarithmic functions, and the second will be the interval of the domain of definition of the logarithmic functions included in the logarithmic inequality.

Practice.

Let's solve the inequalities:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

The base of the logarithm is $2>1$, so the sign does not change. Using the definition of logarithm, we get:

$x+3 \geq 2^(3),$

$x \in )