Trepid.  Sissepääsugrupp.  Materjalid.  Uksed.  Lossid  Disain

Trepid. Sissepääsugrupp. Materjalid. Uksed. Lossid Disain

» Korrutise x 2 e x tuletis on võrdne. Võimsusfunktsiooni tuletis (võimsused ja juured)

Korrutise x 2 e x tuletis on võrdne. Võimsusfunktsiooni tuletis (võimsused ja juured)

Funktsiooni tuletis on üks keerulisemaid teemasid kooli õppekava. Mitte iga lõpetaja ei vasta küsimusele, mis on tuletis.

See artikkel selgitab lihtsalt ja selgelt, mis on tuletis ja miks seda vaja on.. Me ei püüdle nüüd esitluses matemaatilise ranguse poole. Kõige tähtsam on mõista tähendust.

Meenutagem määratlust:

Tuletis on funktsiooni muutumise kiirus.

Joonisel on kujutatud kolme funktsiooni graafikud. Kumb teie arvates kasvab kiiremini?

Vastus on ilmne – kolmas. Sellel on suurim muutusmäär, st suurim tuletis.

Siin on veel üks näide.

Kostja, Griša ja Matvey said samal ajal tööd. Vaatame, kuidas nende sissetulek aasta jooksul muutus:

Graafik näitab kõike korraga, kas pole? Kostja sissetulek kasvas kuue kuuga enam kui kahekordseks. Ja ka Grisha sissetulek kasvas, kuid veidi. Ja Matvey sissetulek vähenes nullini. Algtingimused on samad, kuid funktsiooni muutumise kiirus, st tuletis, - erinev. Mis puutub Matveysse, siis tema tulude tuletisinstrument on üldiselt negatiivne.

Intuitiivselt hindame lihtsalt funktsiooni muutumise kiirust. Aga kuidas me seda teeme?

See, mida me tegelikult vaatame, on see, kui järsult funktsiooni graafik üles (või alla) läheb. Teisisõnu, kui kiiresti y muutub, kui x muutub? Ilmselgelt võib erinevates punktides olla sama funktsioon erinev tähendus tuletis - see tähendab, et see võib muutuda kiiremini või aeglasemalt.

Funktsiooni tuletist tähistatakse .

Näitame teile, kuidas seda graafiku abil leida.

Mõne funktsiooni graafik on koostatud. Võtame punkti, millel on abstsiss. Joonistame selles punktis funktsiooni graafiku puutuja. Tahame hinnata, kui järsult funktsioonigraafik üles tõuseb. Selle jaoks on mugav väärtus puutuja nurga puutuja.

Funktsiooni tuletis punktis on võrdne selles punktis funktsiooni graafikule tõmmatud puutujanurga puutujaga.

Pange tähele, et puutuja kaldenurgaks võtame puutuja ja telje positiivse suuna vahelise nurga.

Mõnikord küsivad õpilased, mis on funktsiooni graafiku puutuja. See on sirgjoon, millel on selles jaotises oleva graafikuga üks ühine punkt ja nagu on näidatud meie joonisel. See näeb välja nagu ringi puutuja.

Otsime üles. Mäletame, et teravnurga puutuja in täisnurkne kolmnurk võrdne vastaskülje ja külgneva külje suhtega. Kolmnurgast:

Leidsime tuletise graafiku abil, teadmata isegi funktsiooni valemit. Selliseid probleeme leidub sageli matemaatika ühtsel riigieksamil numbri all.

On veel üks oluline suhe. Tuletame meelde, et sirge annab võrrand

Selles võrrandis olevat suurust nimetatakse sirgjoone kalle. See on võrdne sirge telje kaldenurga puutujaga.

.

Me saame sellest aru

Meenutagem seda valemit. See väljendab tuletise geomeetrilist tähendust.

Funktsiooni tuletis punktis on võrdne selles punktis funktsiooni graafikule tõmmatud puutuja kaldega.

Teisisõnu on tuletis võrdne puutujanurga puutujaga.

Oleme juba öelnud, et samal funktsioonil võivad erinevates punktides olla erinevad tuletised. Vaatame, kuidas tuletis on seotud funktsiooni käitumisega.

Joonistame mõne funktsiooni graafiku. Las see funktsioon mõnes piirkonnas suureneb, teistes väheneb ja koos erinevatel kiirustel. Ja olgu sellel funktsioonil maksimum- ja miinimumpunktid.

Ühel hetkel funktsioon suureneb. Moodustub punktis joonistatud graafiku puutuja teravnurk; positiivse telje suunaga. See tähendab, et punkti tuletis on positiivne.

Sel hetkel meie funktsioon väheneb. Selle punkti puutuja moodustab nürinurga; positiivse telje suunaga. Alates puutujast nürinurk on negatiivne, punktis on tuletis negatiivne.

See juhtub järgmiselt.

Kui funktsioon kasvab, on selle tuletis positiivne.

Kui see väheneb, on selle tuletis negatiivne.

Mis saab maksimum- ja miinimumpunktides? Näeme, et punktides (maksimaalne punkt) ja (minimaalne punkt) on puutuja horisontaalne. Seetõttu on puutuja puutuja nendes punktides null ja tuletis on samuti null.

Punkt – maksimumpunkt. Sel hetkel asendatakse funktsiooni suurenemine vähenemisega. Järelikult muutub tuletise märk punktis "plussist" "miinusseks".

Punktis - miinimumpunktis - on tuletis samuti null, kuid selle märk muutub "miinusest" "plussiks".

Järeldus: tuletise abil saame funktsiooni käitumise kohta teada kõike, mis meid huvitab.

Kui tuletis on positiivne, siis funktsioon suureneb.

Kui tuletis on negatiivne, siis funktsioon väheneb.

Maksimumpunktis on tuletis null ja muudab märgi plussmärgist miinusmärgiks.

Miinimumpunktis on tuletis samuti null ja muudab märgi miinusest plussiks.

Kirjutame need järeldused tabeli kujul:

suureneb maksimaalne punkt väheneb miinimumpunkt suureneb
+ 0 - 0 +

Teeme kaks väikest täpsustust. Probleemi lahendamisel vajate ühte neist. Teine - esimesel aastal, funktsioonide ja tuletisi tõsisema uurimisega.

Võimalik, et funktsiooni tuletis on mingil hetkel võrdne nulliga, kuid funktsioonil pole selles punktis ei maksimumi ega miinimumi. See on nn :

Punktis on graafiku puutuja horisontaalne ja tuletis null. Kuid enne punkti funktsioon suurenes - ja pärast punkti jätkab suurenemist. Tuletise märk ei muutu – see jääb positiivseks, nagu oli.

Samuti juhtub, et maksimumi või miinimumi punktis tuletist ei eksisteeri. Graafikul vastab see järsule katkestusele, kui antud punktis pole puutujat võimalik joonistada.

Kuidas leida tuletist, kui funktsioon on antud mitte graafiku, vaid valemiga? Sel juhul kehtib


Kuupäev: 20.11.2014

Mis on tuletis?

Tuletisinstrumentide tabel.

Tuletis on üks kõrgema matemaatika põhimõisteid. Selles õppetükis tutvustame seda mõistet. Õpime üksteist tundma, ilma rangete matemaatiliste sõnastuste ja tõestusteta.

See tutvus võimaldab teil:

Saab aru tuletistega lihtsate ülesannete olemusest;

Nende probleemide edukas lahendamine raskeid ülesandeid;

Valmistuge tõsisemateks õppetundideks tuletisinstrumentide kohta.

Esiteks - meeldiv üllatus.)

Tuletise range määratlus põhineb piiride teoorial ja asi on üsna keeruline. See on häiriv. Kuid tuletisinstrumentide praktiline rakendamine reeglina nii ulatuslikke ja sügavaid teadmisi ei nõua!

Enamiku ülesannete edukaks täitmiseks koolis ja ülikoolis piisab teadmisest vaid mõned terminid- ülesande mõistmiseks ja vaid mõned reeglid- selle lahendamiseks. See on kõik. See teeb mind õnnelikuks.

Alustame tutvumist?)

Tingimused ja nimetused.

Algmatemaatikas on palju erinevaid matemaatilisi tehteid. Liitmine, lahutamine, korrutamine, astendamine, logaritm jne. Kui lisada nendele tehtele veel üks tehte, muutub elementaarne matemaatika kõrgemaks. Seda uut operatsiooni nimetatakse eristamist. Selle toimingu määratlust ja tähendust arutatakse eraldi õppetundides.

Siin on oluline mõista, et diferentseerimine on lihtsalt funktsiooni matemaatiline tehe. Me võtame mis tahes funktsiooni ja vastavalt teatud reeglitele teisendame selle. Tulemuseks on uus funktsioon. Seda uut funktsiooni nimetatakse: tuletis.

Eristumine- toiming funktsioonile.

Tuletis- selle toimingu tulemus.

Nii nagu näiteks summa- lisamise tulemus. Või privaatne- jagamise tulemus.

Mõisteid teades saate vähemalt ülesannetest aru.) Sõnad on järgmised: leida funktsiooni tuletis; võta tuletis; eristada funktsiooni; tuletise arvutamine jne. See on kõik üks ja seesama. Muidugi on ka keerulisemaid ülesandeid, kus tuletise leidmine (diferentseerimine) on vaid üks sammudest ülesande lahendamisel.

Tuletist tähistab funktsiooni paremas ülanurgas kriips. nagu see: y" või f"(x) või S"(t) ja nii edasi.

Lugemine igrek insult, ef insult alates x, es insult alates te, no saate aru...)

Algväärtus võib näidata ka konkreetse funktsiooni tuletist, näiteks: (2x+3)", (x 3 )" , (sinx)" jne. Sageli tähistatakse tuletisi diferentsiaalide abil, kuid me selles õppetükis sellist tähistust ei käsitle.

Oletame, et oleme õppinud ülesannetest aru saama. Jääb üle vaid õppida, kuidas neid lahendada.) Lubage mul teile veel kord meelde tuletada: tuletise leidmine on funktsiooni teisendamine teatud reeglite järgi.Üllataval kombel on neid reegleid väga vähe.

Funktsiooni tuletise leidmiseks peate teadma ainult kolme asja. Kolm sammast, millel seisab kogu eristamine. Siin on need kolm sammast:

1. Tuletiste tabel (diferentseerimisvalemid).

3. Kompleksfunktsiooni tuletis.

Alustame järjekorras. Selles õppetükis vaatleme tuletiste tabelit.

Tuletisinstrumentide tabel.

Maailmas on lõpmatu arv funktsioone. Selle sordi hulgas on funktsioone, mis on kõige olulisemad praktiline rakendus. Neid funktsioone leidub kõigis loodusseadustes. Nendest funktsioonidest, nagu tellistest, saate konstrueerida kõik teised. Seda funktsioonide klassi nimetatakse elementaarsed funktsioonid. Just neid funktsioone koolis õpitakse - lineaarne, ruut, hüperbool jne.

Funktsioonide diferentseerimine "nullist", st. Tuletise definitsiooni ja piiride teooria põhjal on see üsna töömahukas asi. Ja matemaatikud on ka inimesed, jah, jah!) Nii nad lihtsustasid oma (ja meie) elu. Nad arvutasid enne meid elementaarfunktsioonide tuletised. Tulemuseks on tuletiste tabel, kus kõik on valmis.)

Siin see on, see plaat kõige populaarsemate funktsioonide jaoks. Vasak - elementaarne funktsioon, paremal on selle tuletis.

Funktsioon
y
Funktsiooni y tuletis
y"
1 C (konstantne väärtus) C" = 0
2 x x" = 1
3 x n (n – mis tahes arv) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctan x
arcctg x
4 a x
e x
5 logi a x
ln x ( a = e)

Soovitan pöörata tähelepanu kolmandale funktsioonide rühmale selles tuletiste tabelis. Astmefunktsiooni tuletis on üks levinumaid valemeid, kui mitte kõige levinum! Kas saate vihjest aru?) Jah, tuletiste tabelit on soovitav peast teada. Muide, see pole nii keeruline, kui võib tunduda. Proovige otsustada rohkem näiteid, laud ise jääb meelde!)

Nagu te mõistate, ei ole tuletise tabeli väärtuse leidmine kõige keerulisem ülesanne. Seetõttu on sellistes ülesannetes väga sageli täiendavaid kiipe. Kas ülesande sõnastuses või algses funktsioonis, mida tabelis ei paista olevat...

Vaatame mõnda näidet:

1. Leia funktsiooni y = x tuletis 3

Tabelis sellist funktsiooni pole. Kuid selles on võimsusfunktsiooni tuletis üldine vaade(kolmas rühm). Meie puhul n=3. Seega asendame n asemel kolm ja kirjutame tulemuse hoolikalt üles:

(x 3) " = 3 x 3-1 = 3x 2

See on kõik.

Vastus: y" = 3x 2

2. Leia funktsiooni y = sinx tuletise väärtus punktis x = 0.

See ülesanne tähendab, et peate esmalt leidma siinuse tuletise ja seejärel selle väärtuse asendama x = 0 sellesse samasse tuletisse. Täpselt sellises järjekorras! Muidu juhtub, et nad asendavad nulliga kohe algse funktsiooni... Meil ​​palutakse leida mitte algfunktsiooni väärtus, vaid väärtus selle tuletis. Tuletis, lubage mul teile meelde tuletada, on uus funktsioon.

Tahvelarvuti abil leiame siinuse ja vastava tuletise:

y" = (sin x)" = cosx

Asendame tuletis nulliga:

y"(0) = cos 0 = 1

See on vastus.

3. Eristage funktsiooni:

Mida, kas see inspireerib?) Tuletisi tabelis pole sellist funktsiooni.

Lubage mul teile meelde tuletada, et funktsiooni eristamine tähendab lihtsalt selle funktsiooni tuletise leidmist. Kui unustate elementaarse trigonomeetria, on meie funktsiooni tuletise otsimine üsna tülikas. Tabel ei aita...

Aga kui me näeme, et meie funktsioon on topeltnurga koosinus, siis läheb kõik kohe paremaks!

Jah, jah! Pidage meeles, et algse funktsiooni muutmine enne eristamist täitsa vastuvõetav! Ja see teeb elu palju lihtsamaks. Kasutades topeltnurga koosinusvalemit:

Need. meie keeruline funktsioon pole midagi muud kui y = cosx. Ja see on tabelifunktsioon. Kohe saame:

Vastus: y" = - sin x.

Näide edasijõudnutele ja üliõpilastele:

4. Leidke funktsiooni tuletis:

Tuletiste tabelis sellist funktsiooni loomulikult pole. Aga kui mäletate elementaarset matemaatikat, tehteid astmetega... Siis on seda funktsiooni täiesti võimalik lihtsustada. nagu see:

Ja x kümnendiku astmega on juba tabelifunktsioon! Kolmas rühm, n = 1/10. Kirjutame otse valemi järgi:

See on kõik. See on vastus.

Loodan, et esimese diferentseerimissambaga – tuletiste tabeliga – on kõik selge. Jääb tegeleda kahe ülejäänud vaalaga. Järgmises tunnis õpime eristamise reegleid.

Algtase

Funktsiooni tuletis. Põhjalik juhend (2019)

Kujutagem ette künklikku ala läbivat sirget teed. See tähendab, et see läheb üles ja alla, kuid ei pööra paremale ega vasakule. Kui telg on suunatud horisontaalselt piki teed ja vertikaalselt, on teejoon väga sarnane mõne pideva funktsiooni graafikuga:

Telg on teatud nullkõrguse tase, mida me kasutame sellena.

Mööda sellist teed edasi liikudes liigume ka üles või alla. Võime ka öelda: kui argument muutub (liikumine mööda abstsisstellge), muutub funktsiooni väärtus (liikumine mööda ordinaattelge). Mõelgem nüüd sellele, kuidas määrata meie tee “järsust”? Mis väärtus see võiks olla? See on väga lihtne: kui palju kõrgus teatud vahemaa võrra edasi liikudes muutub. Tõepoolest, erinevatel teelõikudel, liikudes edasi (piki x-telge) ühe kilomeetri võrra, tõuseme või langeme erinevad kogused meetrit merepinna suhtes (piki ordinaattelge).

Tähistame edusamme (loe "delta x").

Kreeka tähte (delta) kasutatakse matemaatikas tavaliselt eesliitena, mis tähendab "muutust". See tähendab - see on koguse muutus, - muutus; mis see siis on? See on õige, suurusjärgu muutus.

Tähtis: avaldis on üks tervik, üks muutuja. Ärge kunagi eraldage "delta" tähest "x" või mis tahes muust tähest!

See tähendab näiteks.

Niisiis, oleme liikunud edasi, horisontaalselt, võrra. Kui võrrelda tee joont funktsiooni graafikuga, siis kuidas tähistada tõusu? Kindlasti,. See tähendab, et edasi liikudes tõuseme kõrgemale.

Väärtust on lihtne välja arvutada: kui alguses olime kõrgusel ja peale liikumist avastasime end kõrguselt, siis. Kui lõpp-punkt on alguspunktist madalam, on see negatiivne - see tähendab, et me ei tõuse, vaid laskume.

Oletame, et mõnel teelõigul kilomeetri võrra edasi liikudes tõuseb tee kilomeetri võrra ülespoole. Siis on selle koha kalle võrdne. Ja kui tee m edasi liikudes km võrra langeks? Siis on kalle võrdne.

Vaatame nüüd ühe mäe tippu. Kui võtta lõigu algus pool kilomeetrit enne tippu ja lõpp pool kilomeetrit pärast seda, on näha, et kõrgus on peaaegu sama.

See tähendab, et meie loogika kohaselt selgub, et kalle on siin peaaegu võrdne nulliga, mis ilmselgelt pole tõsi. Veidi üle kilomeetri võib palju muutuda. Järsu adekvaatsemaks ja täpsemaks hindamiseks on vaja arvestada väiksemate aladega. Näiteks kui mõõta kõrguse muutust ühe meetri liigutamisel, on tulemus palju täpsem. Kuid isegi sellest täpsusest ei pruugi meile piisata - kui tee keskel on post, siis saame sellest lihtsalt mööda minna. Millise vahemaa peaksime siis valima? Sentimeeter? Millimeeter? Vähem on rohkem!

IN päris elu Kauguste mõõtmine millimeetri täpsusega on enam kui piisav. Kuid matemaatikud püüdlevad alati täiuslikkuse poole. Seetõttu leiutati kontseptsioon lõpmatult väike, see tähendab, et absoluutväärtus on väiksem kui suvaline arv, mida saame nimetada. Näiteks ütlete: üks triljondik! Kui palju vähem? Ja jagate selle arvu - ja see on veelgi väiksem. Ja nii edasi. Kui tahame kirjutada, et suurus on lõpmata väike, kirjutame nii: (loeme “x kipub nulli”). On väga oluline mõista et see arv ei võrdu nulliga! Aga sellele väga lähedal. See tähendab, et saate sellega jagada.

Lõpmatu väikesele vastandmõiste on lõpmata suur (). Tõenäoliselt olete sellega juba kokku puutunud, kui töötasite ebavõrdsuse kallal: see arv on mooduli võrra suurem kui ükski number, mida võite ette kujutada. Kui leiate suurima võimaliku arvu, korrutage see lihtsalt kahega ja saate veelgi suurema arvu. Ja lõpmatus on veelgi suurem kui see, mis juhtub. Tegelikult on lõpmatult suur ja lõpmatult väike teineteise pöördväärtus, st at ja vastupidi: at.

Nüüd pöördume tagasi oma tee juurde. Ideaalselt arvutatud kalle on tee lõpmatu väikese lõigu jaoks arvutatud kalle, see tähendab:

Märgin, et lõpmata väikese nihke korral on ka kõrguse muutus lõpmatult väike. Kuid lubage mul teile meelde tuletada, et lõpmata väike ei tähenda nulliga võrdset. Kui jagate lõpmata väikesed arvud üksteisega, saate üsna tavaline number, Näiteks . See tähendab, et üks väike väärtus võib olla täpselt kordi suurem kui teine.

Milleks see kõik on? Tee, järsk... Me ei lähe autorallile, vaid õpetame matemaatikat. Ja matemaatikas on kõik täpselt sama, ainult kutsutakse teisiti.

Tuletise mõiste

Funktsiooni tuletis on funktsiooni juurdekasvu ja argumendi juurdekasvu suhe argumendi lõpmatu väikese juurdekasvu korral.

Järk-järgult matemaatikas kutsuvad nad muutust. Nimetatakse seda, kuivõrd argument () muutub piki telge liikudes argumentide juurdekasv ja tähistatakse seda, kui palju on funktsioon (kõrgus) muutunud piki telge kauguse võrra edasi liikudes funktsiooni juurdekasv ja on määratud.

Seega on funktsiooni tuletis suhe millal. Tuletist tähistame funktsiooniga sama tähega, ainult algarvuga üleval paremal: või lihtsalt. Niisiis, kirjutame tuletisvalemi järgmiste tähiste abil:

Sarnaselt teele on siin, kui funktsioon suureneb, on tuletis positiivne ja kui see väheneb, on see negatiivne.

Kas tuletis võib olla võrdne nulliga? Kindlasti. Näiteks kui sõidame tasasel horisontaalsel teel, on järsus null. Ja see on tõsi, kõrgus ei muutu üldse. Nii on ka tuletisega: konstantse funktsiooni tuletis (konstant) on võrdne nulliga:

kuna sellise funktsiooni juurdekasv on võrdne nulliga mis tahes.

Meenutagem mäetipu näidet. Selgus, et on võimalik segmendi otsad mööda paigutada erinevad küljedülalt, nii et otste kõrgus on sama, see tähendab, et segment on teljega paralleelne:

Kuid suured segmendid on märk ebatäpsest mõõtmisest. Tõstame oma lõigu endaga paralleelselt üles, siis selle pikkus väheneb.

Lõpuks, kui oleme tipule lõpmatult lähedal, muutub lõigu pikkus lõpmatult väikeseks. Kuid samal ajal jäi see teljega paralleelseks, see tähendab, et kõrguste erinevus selle otstes on võrdne nulliga (see ei kipu, kuid on võrdne). Seega tuletis

Seda võib mõista nii: kui seisame kõige tipus, muudab väike nihe vasakule või paremale meie pikkust tühiselt.

Sellel on ka puhtalgebraline seletus: tipust vasakul funktsioon suureneb, paremal aga väheneb. Nagu me varem teada saime, on funktsiooni suurenemisel tuletis positiivne ja kui see väheneb, siis negatiivne. Aga see muutub sujuvalt, ilma hüpeteta (kuna tee ei muuda kuskil järsult kallet). Seetõttu peavad olema negatiivsed ja positiivsed väärtused. See on koht, kus funktsioon ei suurene ega vähene – tipupunktis.

Sama kehtib ka küna kohta (ala, kus vasakpoolne funktsioon väheneb ja parempoolne funktsioon suureneb):

Natuke juurdekasvu kohta.

Seega muudame argumendi suuruseks. Millisest väärtusest me muudame? Mis sellest (vaidlusest) nüüd on saanud? Saame valida mis tahes punkti ja nüüd tantsime sellest.

Vaatleme koordinaadiga punkti. Funktsiooni väärtus selles on võrdne. Seejärel teeme sama juurdekasvu: suurendame koordinaati võrra. Mis argument nüüd on? Väga lihtne:. Mis on funktsiooni väärtus praegu? Kuhu läheb argument, läheb ka funktsioon: . Aga funktsiooni juurdekasv? Ei midagi uut: see on ikkagi summa, mille võrra funktsioon on muutunud:

Harjutage juurdekasvu leidmist:

  1. Leia funktsiooni juurdekasv punktis, kus argumendi juurdekasv on võrdne.
  2. Sama kehtib ka funktsiooni kohta punktis.

Lahendused:

Erinevates punktides sama argumendi juurdekasvuga on funktsiooni juurdekasv erinev. See tähendab, et tuletis igas punktis on erinev (me arutasime seda kohe alguses - tee järsk on erinevates punktides erinev). Seetõttu peame tuletise kirjutamisel näitama, millisel hetkel:

Toitefunktsioon.

Võimsusfunktsioon on funktsioon, mille argument on mingil määral (loogiline, eks?).

Pealegi - mis tahes määral: .

Lihtsaim juhtum on siis, kui eksponents on:

Leiame selle tuletise ühest punktist. Tuletagem meelde tuletise määratlust:

Nii et argument muutub väärtusest kuni. Mis on funktsiooni juurdekasv?

Kasv on see. Kuid funktsioon mis tahes punktis on võrdne selle argumendiga. Sellepärast:

Tuletis on võrdne:

Tuletis on võrdne:

b) Nüüd kaaluge ruutfunktsioon (): .

Nüüd meenutagem seda. See tähendab, et juurdekasvu väärtuse võib tähelepanuta jätta, kuna see on lõpmata väike ja seetõttu teise termini taustal tähtsusetu:

Niisiis, me leidsime veel ühe reegli:

c) Jätkame loogilist seeriat: .

Seda avaldist saab lihtsustada mitmel viisil: avage esimene sulg, kasutades summa kuubi lühendatud korrutamise valemit, või faktoristage kogu avaldis kuubikute erinevuse valemi abil. Proovige seda ise teha, kasutades mõnda soovitatud meetodit.

Niisiis, sain järgmise:

Ja jälle meenutagem seda. See tähendab, et võime tähelepanuta jätta kõik terminid, mis sisaldavad:

Saame: .

d) Sarnased reeglid on saadaval suurte võimsuste jaoks:

e) Selgub, et seda reeglit saab üldistada suvalise astendajaga astmefunktsiooni jaoks, isegi mitte täisarvuga:

(2)

Reegli saab sõnastada sõnadega: "kraad tuuakse koefitsiendina ette ja seejärel vähendatakse võrra."

Tõestame seda reeglit hiljem (peaaegu päris lõpus). Vaatame nüüd mõnda näidet. Leidke funktsioonide tuletis:

  1. (kahel viisil: valemiga ja kasutades tuletise definitsiooni – funktsiooni juurdekasvu arvutades);
  1. . Uskuge või mitte, see on võimsusfunktsioon. Kui teil on küsimusi nagu „Kuidas see on? Kus on kraad?”, jäta meelde teema “”!
    Jah, jah, juur on ka aste, ainult murdosa: .
    Nii et meie oma ruutjuur- see on lihtsalt kraad koos indikaatoriga:
    .
    Otsime tuletist hiljuti õpitud valemi abil:

    Kui siinkohal jääb jälle selgusetuks, korrake teemat “”!!! (umbes negatiivse astendajaga kraad)

  2. . Nüüd astendaja:

    Ja nüüd läbi määratluse (kas olete juba unustanud?):
    ;
    .
    Nüüd, nagu tavaliselt, jätame tähelepanuta mõiste, mis sisaldab:
    .

  3. . Varasemate juhtumite kombinatsioon: .

Trigonomeetrilised funktsioonid.

Siin kasutame ühte fakti kõrgemast matemaatikast:

Väljendiga.

Tõestust saate teada instituudi esimesel kursusel (ja sinna saamiseks peate hästi sooritama ühtse riigieksami). Nüüd näitan seda lihtsalt graafiliselt:

Näeme, et kui funktsiooni pole olemas, lõigatakse graafik punkt välja. Kuid mida lähemal väärtusele, seda lähemal on see funktsioon.

Lisaks saate seda reeglit kontrollida kalkulaatori abil. Jah, jah, ärge kartke, kasutage kalkulaatorit, me ei ole veel ühtsel riigieksamil.

Niisiis, proovime: ;

Ärge unustage lülitada oma kalkulaatorit radiaanirežiimile!

jne. Näeme, et mida väiksem, seda lähemal on suhtarvu väärtus.

a) Mõelge funktsioonile. Nagu tavaliselt, leiame selle juurdekasvu:

Muudame siinuste erinevuse korrutiseks. Selleks kasutame valemit (pidage meeles teemat ""): .

Nüüd tuletis:

Teeme asendus: . Siis on see ka lõpmatu väiksearvuline: . Avaldis jaoks on järgmine:

Ja nüüd meenutame seda väljendiga. Ja mis siis, kui summas (st at-s) võib tähelepanuta jätta lõpmata väikese suuruse.

Niisiis, saame järgmise reegli: siinuse tuletis on võrdne koosinusega:

Need on põhilised (tabelikujulised) tuletised. Siin on need ühes loendis:

Hiljem lisame neile veel mõned, kuid need on kõige olulisemad, kuna neid kasutatakse kõige sagedamini.

Harjuta:

  1. Leia funktsiooni tuletis punktis;
  2. Leia funktsiooni tuletis.

Lahendused:

  1. Esiteks leiame tuletise üldkujul ja seejärel asendame selle väärtuse:
    ;
    .
  2. Siin on midagi võimsusfunktsiooniga sarnast. Proovime teda tuua
    tavavaade:
    .
    Suurepärane, nüüd saate kasutada valemit:
    .
    .
  3. . Eeeeeee... Mis see on????

Olgu, sul on õigus, me ei tea veel, kuidas selliseid tuletisi leida. Siin on meil mitut tüüpi funktsioonide kombinatsioon. Nendega töötamiseks peate õppima veel mõned reeglid:

Eksponent ja naturaallogaritm.

Matemaatikas on funktsioon, mille tuletis mis tahes väärtuse jaoks on samaaegselt võrdne funktsiooni enda väärtusega. Seda nimetatakse eksponendiks ja see on eksponentsiaalne funktsioon

Selle funktsiooni aluseks on konstant – see on lõpmatu koma, see tähendab irratsionaalne arv (näiteks). Seda nimetatakse "Euleri numbriks", mistõttu on see tähistatud tähega.

Niisiis, reegel:

Väga lihtne meelde jätta.

Noh, ärme lähe kaugele, mõelgem kohe pöördfunktsioonile. Milline funktsioon on pöördväärtus eksponentsiaalne funktsioon? Logaritm:

Meie puhul on aluseks number:

Sellist logaritmi (see tähendab logaritmi alusega) nimetatakse "loomulikuks" ja me kasutame selle jaoks spetsiaalset tähistust: kirjutame selle asemel.

Millega see on võrdne? Muidugi.

Naturaallogaritmi tuletis on samuti väga lihtne:

Näited:

  1. Leia funktsiooni tuletis.
  2. Mis on funktsiooni tuletis?

Vastused: Eksponent ja naturaallogaritm- funktsioonid on tuletiste poolest ainulaadselt lihtsad. Mis tahes muu alusega eksponentsiaalsetel ja logaritmilistel funktsioonidel on erinev tuletis, mida analüüsime hiljem, kui oleme läbinud diferentseerimisreeglid.

Eristamise reeglid

Mille reeglid? Jällegi uus termin, jälle?!...

Eristumine on tuletise leidmise protsess.

See on kõik. Kuidas seda protsessi ühe sõnaga veel nimetada? Mitte tuletis... Matemaatikute diferentsiaal on sama funktsiooni juurdekasv at. See termin pärineb ladina sõnast differentia – erinevus. Siin.

Kõigi nende reeglite tuletamisel kasutame kahte funktsiooni, näiteks ja. Nende juurdekasvu jaoks vajame ka valemeid:

Kokku on 5 reeglit.

Konstant võetakse tuletismärgist välja.

Kui - mingi konstantne arv (konstant), siis.

Ilmselt töötab see reegel ka erinevuse jaoks: .

Tõestame seda. Las see olla või lihtsam.

Näited.

Leidke funktsioonide tuletised:

  1. punktis;
  2. punktis;
  3. punktis;
  4. punktis.

Lahendused:

  1. (tuletis on kõigis punktides sama, kuna see on lineaarne funktsioon, mäletate?);

Toote tuletis

Siin on kõik sarnane: astume sisse uus funktsioon ja leidke selle juurdekasv:

Tuletis:

Näited:

  1. Leia funktsioonide ja tuletised;
  2. Leia funktsiooni tuletis punktis.

Lahendused:

Eksponentfunktsiooni tuletis

Nüüd piisab teie teadmistest, et õppida leidma mis tahes eksponentsiaalfunktsiooni tuletist, mitte ainult eksponente (kas olete juba unustanud, mis see on?).

Niisiis, kus on mõni number.

Me juba teame funktsiooni tuletist, nii et proovime oma funktsiooni viia uuele alusele:

Selleks kasutame lihtne reegel: . Seejärel:

Noh, see töötas. Proovige nüüd leida tuletis ja ärge unustage, et see funktsioon on keeruline.

Kas see töötas?

Siin kontrollige ennast:

Valem osutus väga sarnaseks eksponendi tuletisele: nii nagu see oli, jääb see samaks, ilmus ainult tegur, mis on vaid arv, kuid mitte muutuja.

Näited:
Leidke funktsioonide tuletised:

Vastused:

See on lihtsalt arv, mida ei saa ilma kalkulaatorita välja arvutada, st seda ei saa enam üles kirjutada lihtsal kujul. Seetõttu jätame selle vastusesse sellisel kujul.

Logaritmilise funktsiooni tuletis

Siin on see sarnane: te juba teate naturaallogaritmi tuletist:

Seetõttu, et leida suvaline logaritm erineva alusega, näiteks:

Peame selle logaritmi taandada baasini. Kuidas muuta logaritmi alust? Loodan, et mäletate seda valemit:

Alles nüüd kirjutame selle asemel:

Nimetaja on lihtsalt konstant (konstantne arv, ilma muutujata). Tuletis saadakse väga lihtsalt:

Eksponentsiaalsete ja logaritmiliste funktsioonide tuletisi ei leidu ühtsest riigieksamist peaaegu kunagi, kuid nende tundmine ei ole üleliigne.

Kompleksfunktsiooni tuletis.

Mis on "keeruline funktsioon"? Ei, see ei ole logaritm ega arctangent. Nendest funktsioonidest võib olla raske aru saada (kuigi kui te peate logaritmi keeruliseks, lugege teemat "Logaritmid" ja kõik on korras), kuid matemaatilisest vaatenurgast ei tähenda sõna "keeruline" "keeruline".

Kujutage ette väikest konveieri: kaks inimest istuvad ja teevad mingeid toiminguid mõne esemega. Näiteks esimene mähib šokolaaditahvli ümbrisesse ja teine ​​seob selle paelaga. Tulemuseks on komposiitobjekt: paelaga mähitud ja seotud šokolaaditahvel. Šokolaaditahvli söömiseks peate tegema vastupidised toimingud vastupidine järjekord.

Loome sarnase matemaatilise konveieri: kõigepealt leiame arvu koosinuse ja seejärel ruudustage saadud arv. Niisiis, meile antakse number (šokolaad), ma leian selle koosinuse (ümbris) ja siis ruudud, mis ma sain (seo see lindiga). Mis juhtus? Funktsioon. See on näide keerulisest funktsioonist: kui selle väärtuse leidmiseks sooritame esimese toimingu otse muutujaga ja seejärel teise toimingu esimese toiminguga.

Saame hõlpsasti teha samu samme vastupidises järjekorras: kõigepealt ruudud ja siis otsin saadud arvu koosinust: . Lihtne on arvata, et tulemus on peaaegu alati erinev. Oluline funktsioon keerulised funktsioonid: kui toimingute järjekord muutub, muutub funktsioon.

Teisisõnu kompleksfunktsioon on funktsioon, mille argument on teine ​​funktsioon: .

Esimese näitena .

Teine näide: (sama asi). .

Tegevust, mida me viimati teeme, nimetatakse "väline" funktsioon, ja esmalt sooritatud toiming – vastavalt "sisemine" funktsioon(need on mitteametlikud nimed, kasutan neid ainult materjali lihtsas keeles selgitamiseks).

Proovige ise kindlaks teha, milline funktsioon on väline ja milline sisemine:

Vastused: Sisemiste ja välimiste funktsioonide eraldamine on väga sarnane muutujate muutmisega: näiteks funktsioonis

  1. Millise toimingu me kõigepealt teeme? Kõigepealt arvutame siinuse ja alles siis kuubime. See tähendab, et see on sisemine, kuid väline funktsioon.
    Ja algne funktsioon on nende koostis: .
  2. Sisemine: ; väline: .
    Eksam: .
  3. Sisemine: ; väline: .
    Eksam: .
  4. Sisemine: ; väline: .
    Eksam: .
  5. Sisemine: ; väline: .
    Eksam: .

Muudame muutujaid ja saame funktsiooni.

Noh, nüüd eraldame oma šokolaaditahvli ja otsime tuletise. Protseduur on alati vastupidine: kõigepealt otsime välisfunktsiooni tuletist, seejärel korrutame tulemuse sisemise funktsiooni tuletisega. Seoses algse näitega näeb see välja järgmine:

Teine näide:

Niisiis, sõnastame lõpuks ametliku reegli:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

Tundub lihtne, eks?

Kontrollime näidetega:

Lahendused:

1) Sisemine: ;

Väline: ;

2) Sisemine: ;

(Ära proovi seda praegu lõigata! Koosinuse alt ei tule midagi välja, mäletad?)

3) Sisemine: ;

Väline: ;

Kohe on selge, et tegemist on kolmetasandilise kompleksfunktsiooniga: see on ju juba iseenesest keeruline funktsioon ja me võtame sealt välja ka juure ehk sooritame kolmanda toimingu (paneme šokolaadi sisse ümbris ja lindiga kohvris). Kuid karta pole põhjust: selle funktsiooni “pakkime” ikka lahti samas järjekorras nagu tavaliselt: lõpust.

See tähendab, et kõigepealt eristame juurt, seejärel koosinust ja alles seejärel sulgudes olevat avaldist. Ja siis me korrutame selle kõik.

Sellistel juhtudel on mugav toiminguid nummerdada. See tähendab, kujutame ette, mida me teame. Millises järjekorras teeme selle avaldise väärtuse arvutamiseks toiminguid? Vaatame näidet:

Mida hiljem toiming sooritatakse, seda “välisem” on vastav funktsioon. Toimingute jada on sama, mis varem:

Siin on pesitsus üldiselt 4-tasandiline. Määrame tegevussuuna.

1. Radikaalne väljendus. .

2. Juur. .

3. Siinus. .

4. Ruut. .

5. Pane kõik kokku:

DERIVAAT. LÜHIDALT PEAMISEST

Funktsiooni tuletis- funktsiooni juurdekasvu ja argumendi juurdekasvu suhe argumendi lõpmatu väikese juurdekasvu korral:

Põhilised tuletised:

Eristamise reeglid:

Konstant võetakse tuletismärgist välja:

Summa tuletis:

Toote tuletis:

Jagatise tuletis:

Kompleksfunktsiooni tuletis:

Algoritm kompleksfunktsiooni tuletise leidmiseks:

  1. Defineerime "sisemise" funktsiooni ja leiame selle tuletise.
  2. Defineerime "välise" funktsiooni ja leiame selle tuletise.
  3. Korrutame esimese ja teise punkti tulemused.

Definitsioon. Olgu funktsioon \(y = f(x) \) defineeritud teatud intervallis, mis sisaldab endas punkti \(x_0\). Anname argumendile juurdekasvu \(\Delta x \), nii et see ei lahku sellest intervallist. Leiame funktsiooni \(\Delta y \) vastava juurdekasvu (punktist \(x_0 \) punktist \(x_0 + \Delta x \) liikudes) ja koostame seose \(\frac(\Delta y)(\Delta x) \). Kui \(\Delta x \paremnool 0\) on selle suhte piirang, nimetatakse määratud piirmäära funktsiooni tuletis\(y=f(x) \) punktis \(x_0 \) ja tähistab \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Tuletise tähistamiseks kasutatakse sageli sümbolit y. Pange tähele, et y" = f(x) on uus funktsioon, kuid loomulikult seotud funktsiooniga y = f(x), mis on määratletud kõigis punktides x, kus ülaltoodud piir on olemas. Seda funktsiooni nimetatakse järgmiselt: funktsiooni y = f(x) tuletis.

Tuletise geomeetriline tähendus on järgmine. Kui funktsiooni y = f(x) graafikule on võimalik joonestada puutuja punktis, mille abstsiss on x=a ja mis ei ole paralleelne y-teljega, siis f(a) väljendab puutuja kaldenurka. :
\(k = f"(a)\)

Kuna \(k = tg(a) \), siis on võrdus \(f"(a) = tan(a) \) tõene.

Nüüd tõlgendame tuletise definitsiooni ligikaudsete võrdsuste seisukohalt. Olgu funktsioonil \(y = f(x)\) tuletis kindlas punktis \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
See tähendab, et punkti x lähedal on ligikaudne võrdsus \(\frac(\Delta y)(\Delta x) \umbes f"(x) \), st \(\Delta y \approx f"(x) \cdot\ Delta x\). Saadud ligikaudse võrdsuse tähenduslik tähendus on järgmine: funktsiooni juurdekasv on “peaaegu proportsionaalne” argumendi juurdekasvuga ja proportsionaalsuskordaja on tuletise väärtus antud punktis x. Näiteks funktsiooni \(y = x^2\) puhul kehtib ligikaudne võrdus \(\Delta y \umbes 2x \cdot \Delta x \). Kui tuletise definitsiooni hoolikalt analüüsime, leiame, et see sisaldab selle leidmise algoritmi.

Sõnastame selle.

Kuidas leida funktsiooni y = f(x) tuletist?

1. Parandage \(x\) väärtus, leidke \(f(x)\)
2. Andke argumendile \(x\) juurdekasv \(\Delta x\), minge uus punkt\(x+ \Delta x \), leidke \(f(x+ \Delta x) \)
3. Leidke funktsiooni juurdekasv: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Looge seos \(\frac(\Delta y)(\Delta x) \)
5. Arvutage $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
See piirväärtus on funktsiooni tuletis punktis x.

Kui funktsioonil y = f(x) on tuletis punktis x, siis nimetatakse seda punktis x diferentseeruvaks. Kutsutakse välja funktsiooni y = f(x) tuletise leidmise protseduur eristamist funktsioonid y = f(x).

Arutleme järgmise küsimuse üle: kuidas on funktsiooni pidevus ja diferentseeritavus mingis punktis omavahel seotud?

Olgu funktsioon y = f(x) punktis x diferentseeruv. Seejärel saab funktsiooni graafikule punktis M(x; f(x)) tõmmata puutuja ja meenutades, puutuja nurkkoefitsient on võrdne f "(x). Selline graafik ei saa "katkeneda" punktis M, st funktsioon peab punktis x olema pidev.

Need olid "käelised" argumendid. Esitagem rangem põhjendus. Kui funktsioon y = f(x) on punktis x diferentseeruv, siis kehtib ligikaudne võrdus \(\Delta y \umbes f"(x) \cdot \Delta x\). Kui selles võrratuses \(\Delta x) \) kipub olema null, siis \(\Delta y \) kipub olema null ja see on funktsiooni järjepidevuse tingimus punktis.

Niisiis, kui funktsioon on punktis x diferentseeruv, siis on see selles punktis pidev.

Vastupidine väide ei vasta tõele. Näiteks: funktsioon y = |x| on pidev kõikjal, eriti punktis x = 0, kuid funktsiooni graafiku puutujat ristmikul (0; 0) ei eksisteeri. Kui mingil hetkel ei saa funktsiooni graafikule puutujat tõmmata, siis tuletist selles punktis ei eksisteeri.

Teine näide. Funktsioon \(y=\sqrt(x)\) on pidev kogu arvteljel, kaasa arvatud punktis x = 0. Ja funktsiooni graafiku puutuja eksisteerib igas punktis, sealhulgas punktis x = 0 Kuid sellel hetkel langeb puutuja kokku y-teljega, st on abstsissteljega risti, selle võrrandi kuju on x = 0. Kalde koefitsient sellisel real puudub, mis tähendab, et \(f"(0) \) pole ka olemas

Niisiis, tutvusime funktsiooni uue omadusega - diferentseeritavusega. Kuidas saab funktsiooni graafikust järeldada, et see on diferentseeritav?

Vastus on tegelikult antud eespool. Kui mingil hetkel on võimalik joonestada funktsiooni graafikule puutuja, mis ei ole risti abstsissteljega, siis selles punktis on funktsioon diferentseeritav. Kui mingil hetkel funktsiooni graafiku puutujat ei eksisteeri või see on risti abstsissteljega, siis selles punktis funktsioon ei ole diferentseeritav.

Eristamise reeglid

Tuletise leidmise operatsiooni nimetatakse eristamist. Selle toimingu tegemisel peate sageli töötama jagatistega, summade, funktsioonide korrutistega, aga ka "funktsioonide funktsioonidega", see tähendab keerukate funktsioonidega. Tuletise definitsiooni põhjal saame tuletada diferentseerimisreeglid, mis muudavad selle töö lihtsamaks. Kui C on konstantne arv ja f=f(x), g=g(x) on mõned diferentseeruvad funktsioonid, siis on tõesed järgmised diferentseerimisreeglid:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Kompleksfunktsiooni tuletis:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Mõnede funktsioonide tuletiste tabel

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Kui järgite definitsiooni, on funktsiooni tuletis punktis funktsiooni Δ juurdekasvu suhte piir y argumendi juurdekasvule Δ x:

Kõik näib olevat selge. Kuid proovige kasutada seda valemit, et arvutada näiteks funktsiooni tuletis f(x) = x 2 + (2x+ 3) · e x patt x. Kui teete kõike definitsiooni järgi, siis pärast paari lehekülge arvutusi jääte lihtsalt magama. Seetõttu on lihtsamaid ja tõhusamaid viise.

Alustuseks märgime, et kogu funktsioonide hulgast saame eristada nn elementaarfunktsioone. Need on suhteliselt lihtsad avaldised, mille tuletised on juba ammu arvutatud ja tabelisse kantud. Selliseid funktsioone on üsna lihtne meeles pidada – koos nende tuletistega.

Elementaarfunktsioonide tuletised

Elementaarsed funktsioonid on kõik allpool loetletud. Nende funktsioonide tuletised peavad olema peast teada. Pealegi pole neid üldse raske pähe õppida - sellepärast on need elementaarsed.

Niisiis, elementaarfunktsioonide tuletised:

Nimi Funktsioon Tuletis
Püsiv f(x) = C, CR 0 (jah, null!)
Võimsus ratsionaalse astendajaga f(x) = x n n · x n − 1
Sinus f(x) = patt x cos x
Koosinus f(x) = cos x − patt x(miinus siinus)
Tangent f(x) = tg x 1/cos 2 x
Kotangent f(x) = ctg x − 1 / patt 2 x
Naturaalne logaritm f(x) = log x 1/x
Suvaline logaritm f(x) = log a x 1/(x ln a)
Eksponentfunktsioon f(x) = e x e x(midagi pole muutunud)

Kui elementaarfunktsiooni korrutada suvalise konstandiga, on ka uue funktsiooni tuletis kergesti arvutatav:

(C · f)’ = C · f ’.

Üldjuhul saab konstandid tuletise märgist välja võtta. Näiteks:

(2x 3)' = 2 · ( x 3) = 2 3 x 2 = 6x 2 .

Ilmselgelt saab elementaarseid funktsioone omavahel liita, korrutada, jagada – ja palju muud. Nii tekivad uued funktsioonid, mis pole enam eriti elementaarsed, vaid ka teatud reeglite järgi diferentseeritud. Neid reegleid käsitletakse allpool.

Summa ja vahe tuletis

Olgu funktsioonid antud f(x) Ja g(x), mille tuletised on meile teada. Näiteks võite võtta ülalpool käsitletud elementaarfunktsioonid. Seejärel leiate nende funktsioonide summa ja erinevuse tuletise:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Seega on kahe funktsiooni summa (erinevus) tuletis võrdne tuletiste summaga (erinevus). Tingimusi võib olla rohkem. Näiteks ( f + g + h)’ = f ’ + g ’ + h ’.

Rangelt võttes pole algebras "lahutamise" mõistet. On olemas mõiste "negatiivne element". Seetõttu erinevus fg saab summaks ümber kirjutada f+ (-1) g, ja siis jääb järele ainult üks valem - summa tuletis.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Funktsioon f(x) on kahe elementaarfunktsiooni summa, seega:

f ’(x) = (x 2 + patt x)’ = (x 2)’ + (patt x)’ = 2x+ cos x;

Sarnaselt põhjendame seda funktsiooni g(x). Ainult seal on juba kolm terminit (algebra seisukohalt):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Vastus:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Toote tuletis

Matemaatika on loogikateadus, nii et paljud inimesed usuvad, et kui summa tuletis on võrdne tuletiste summaga, siis korrutise tuletis streikima">võrdne tuletisinstrumentide korrutisega. Aga perse! Toote tuletis arvutatakse täiesti erineva valemiga. Nimelt:

(f · g) ’ = f ’ · g + f · g

Valem on lihtne, kuid sageli unustatakse. Ja mitte ainult koolilapsed, vaid ka üliõpilased. Tulemuseks on valesti lahendatud probleemid.

Ülesanne. Leia funktsioonide tuletised: f(x) = x 3 cos x; g(x) = (x 2 + 7x– 7) · e x .

Funktsioon f(x) on kahe elementaarfunktsiooni korrutis, seega on kõik lihtne:

f ’(x) = (x 3 cos x)’ = (x 3)' cos x + x 3 (maks x)’ = 3x 2 cos x + x 3 (-sin x) = x 2 (3 cos xx patt x)

Funktsioon g(x) esimene tegur on veidi keerulisem, kuid üldine skeem see ei muutu. Ilmselgelt funktsiooni esimene tegur g(x) on polünoom ja selle tuletis on summa tuletis. Meil on:

g ’(x) = ((x 2 + 7x– 7) · e x)’ = (x 2 + 7x– 7)" · e x + (x 2 + 7x– 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x– 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Vastus:
f ’(x) = x 2 (3 cos xx patt x);
g ’(x) = x(x+ 9) · e x .

Pange tähele, et viimases etapis on tuletis faktoriseeritud. Formaalselt pole seda vaja teha, kuid enamik tuletisi ei arvutata iseseisvalt, vaid funktsiooni uurimiseks. See tähendab, et edaspidi võrdsustatakse tuletis nulliga, määratakse selle märgid ja nii edasi. Sellisel juhul on parem avaldis faktoriseerida.

Kui on kaks funktsiooni f(x) Ja g(x) ja g(x) ≠ 0 meid huvitaval hulgal, saame defineerida uue funktsiooni h(x) = f(x)/g(x). Sellise funktsiooni jaoks leiate ka tuletise:

Pole nõrk, ah? Kust tuli miinus? Miks g 2? Ja nii! See on üks kõige enam keerulised valemid- Ilma pudelita ei saa te sellest aru. Seetõttu on parem seda uurida konkreetsed näited.

Ülesanne. Leia funktsioonide tuletised:

Iga murru lugeja ja nimetaja sisaldavad elementaarfunktsioone, seega vajame ainult jagatise tuletise valemit:


Traditsiooni kohaselt faktoreerime lugeja - see lihtsustab vastust oluliselt:

Keeruline funktsioon ei pruugi olla poole kilomeetri pikkune valem. Näiteks piisab funktsiooni võtmisest f(x) = patt x ja asendada muutuja x, ütleme, edasi x 2 + ln x. See saab korda f(x) = patt ( x 2 + ln x) – see on keeruline funktsioon. Sellel on ka tuletis, kuid seda ei ole võimalik ülalkirjeldatud reeglite abil leida.

Mida ma peaksin tegema? Sellistel juhtudel aitab kompleksfunktsiooni tuletise muutuja ja valemi asendamine:

f ’(x) = f ’(t) · t', Kui x asendatakse t(x).

Reeglina on olukord selle valemi mõistmisega veelgi kurvem kui jagatise tuletisega. Seetõttu on parem seda ka konkreetsete näidetega selgitada, koos üksikasjalik kirjeldus igal sammul.

Ülesanne. Leia funktsioonide tuletised: f(x) = e 2x + 3 ; g(x) = patt ( x 2 + ln x)

Pange tähele, et kui funktsioonis f(x) avaldise 2 asemel x+3 saab olema lihtne x, siis saame elementaarfunktsiooni f(x) = e x. Seetõttu teeme asendus: laske 2 x + 3 = t, f(x) = f(t) = e t. Otsime kompleksfunktsiooni tuletist, kasutades valemit:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Ja nüüd - tähelepanu! Teostame vastupidise asendamise: t = 2x+ 3. Saame:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Nüüd vaatame funktsiooni g(x). Ilmselgelt tuleb see välja vahetada x 2 + ln x = t. Meil on:

g ’(x) = g ’(t) · t’ = (patt t)’ · t' = cos t · t

Vastupidine asendamine: t = x 2 + ln x. Seejärel:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)' = cos ( x 2 + ln x) · (2 x + 1/x).

See on kõik! Nagu näha on viimane väljend, taandus kogu probleem tuletissumma arvutamisele.

Vastus:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Väga sageli kasutan ma oma tundides termini "tuletis" asemel sõna "alim". Näiteks prime summast võrdne summaga lööki. Kas see on selgem? No see on hea.

Seega taandub tuletise arvutamine samadest löökidest vabanemisele vastavalt ülalkirjeldatud reeglitele. Viimase näitena pöördume tagasi ratsionaalse astendajaga tuletusastme juurde:

(x n)’ = n · x n − 1

Vähesed inimesed teavad seda rollis n võib olla murdarv. Näiteks juur on x 0.5. Mis siis, kui juure all on midagi uhket? Jällegi on tulemuseks keeruline funktsioon - neile meeldib selliseid konstruktsioone anda testid ja eksamid.

Ülesanne. Leia funktsiooni tuletis:

Esmalt kirjutame juure ümber ratsionaalse astendajaga astmeks:

f(x) = (x 2 + 8x − 7) 0,5 .

Nüüd teeme asendus: lase x 2 + 8x − 7 = t. Leiame tuletise valemi abil:

f ’(x) = f ’(t) · t ’ = (t 0,5)" t' = 0,5 · t–0,5 · t ’.

Teeme vastupidise asendamise: t = x 2 + 8x− 7. Meil ​​on:

f ’(x) = 0,5 · ( x 2 + 8x– 7) –0,5 · ( x 2 + 8x− 7)' = 0,5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Lõpuks tagasi juurte juurde: