Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Горизонтальное падение формулы. Движение тела под углом к горизонту: формулы, расчет дальности полета и максимальной высоты взлета. Примеры решения задач

Горизонтальное падение формулы. Движение тела под углом к горизонту: формулы, расчет дальности полета и максимальной высоты взлета. Примеры решения задач

Задача 1

Первую половину прямолинейного участка пути турист прошел со скоростью v 1 = 4,8 км/ч, а вторую половину - со скоростью v 2 = 3,6 км/ч. Чему равна средняя скорость движения туриста на всем участке пути?

Решение. При решении этой задачи мы некоторые пункты из рекомендованных советов опустим. Здесь нет надобности в выборе системы координат и составлении уравнения, описывающего движение туриста. Важно лишь знать, что такое средняя скорость. (В данном случае средняя скорость и средний модуль скорости совпадают.) Решение этой задачи поучительно еще и тем, что не надо бояться временно в процессе решения вводить величины, значения которых в условии задачи не даны.

Обозначим весь путь, пройденный туристом, буквой l (рис. 1.39), а время, за которое этот путь пройден, - буквой t. Тогда, согласно определению, средняя скорость туриста на всем пути равна

Рис. 1.39

Время t складывается из времени t 1 прохождения туристом первой половины пути и времени t 2 прохождения им второй половины пути :

Подставляя это выражение для времени t движения туриста в формулу (1.14.1), получим:

Задача 2

Координаты точки при равномерном прямолинейном движении на плоскости XOY за время t = 2 с изменились от начальных значений х 0 = 5 м, у 0 = 7 м до значений х = -3 м, у = 1 м. Найдите модуль скорости точки. Изобразите вектор скорости на рисунке.

Решение. Для нахождения модуля скорости надо знать проекции скорости на оси координат. Из уравнений х = х 0 + v x t и y = y 0 + v y t находим обе проекции скорости.

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила -- сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси ах = 0, ау = - g.

Рисунок 1. Кинематические характеристики тела, брошенного под углом к горизонту

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

где $v_0$ - начальная скорость, ${\mathbf \alpha }$ - угол бросания.

При нашем выборе начала координат начальные координаты (рис. 1) $x_0=y_0=0$. Тогда получим:

(1)

Проанализируем формулы (1). Определим время движения брошенного тела. Для этого положим координату y равной нулю, т.к. в момент приземления высота тела равна нулю. Отсюда получаем для времени полета:

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета - это значение координаты х в конце полета, т.е. в момент времени, равный $t_0$. Подставляя значение (2) в первую формулу (1), получаем:

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Из уравнений (1) можно получить уравнение траектории тела, т.е. уравнение, связывающее координаты х и у тела во время движения. Для этого нужно из первого уравнения (1) выразить время:

и подставить его во второе уравнение. Тогда получим:

Это уравнение является уравнением траектории движения. Видно, что это уравнение параболы, расположенной ветвями вниз, о чем говорит знак «-» перед квадратичным слагаемым. Следует иметь в виду, что угол бросания $\alpha $ и его функции -- здесь просто константы, т.е. постоянные числа.

Тело брошено со скоростью v0 под углом ${\mathbf \alpha }$ к горизонту. Время полета $t = 2 с$. На какую высоту Hmax поднимется тело?

$$t_В = 2 с$$ $$H_max - ?$$

Закон движения тела имеет вид:

$$\left\{ \begin{array}{c} x=v_{0x}t \\ y=v_{0y}t-\frac{gt^2}{2} \end{array} \right.$$

Вектор начальной скорости образует с осью ОХ угол ${\mathbf \alpha }$. Следовательно,

\ \ \

С вершины горы бросают под углом = 30${}^\circ$ к горизонту камень с начальной скоростью $v_0 = 6 м/с$. Угол наклонной плоскости = 30${}^\circ$. На каком расстоянии от точки бросания упадет камень?

$$ \alpha =30{}^\circ$$ $$v_0=6\ м/с$$ $$S - ?$$

Поместим начало координат в точку бросания, ОХ -- вдоль наклонной плоскости вниз, OY -- перпендикулярно наклонной плоскости вверх. Кинематические характеристики движения:

Закон движения:

$$\left\{ \begin{array}{c} x=v_0t{cos 2\alpha +g\frac{t^2}{2}{sin \alpha \ }\ } \\ y=v_0t{sin 2\alpha \ }-\frac{gt^2}{2}{cos \alpha \ } \end{array} \right.$$ \

Подставив полученное значение $t_В$, найдём $S$:

Теория

Если тело бросить под углом к горизонту, то в полете на него действуют сила тяжести и сила сопротивления воздуха. Если силой сопротивления пренебречь, то остается единственная сила – сила тяжести. Поэтому вследствие 2-го закона Ньютона тело движется с ускорением, равным ускорению свободного падения ; проекции ускорения на координатные оси равны а х = 0, а у = -g.

Любое сложное движение материальной точки можно представить как наложение независимых движений вдоль координатных осей, причем в направлении разных осей вид движения может отличаться. В нашем случае движение летящего тела можно представить как наложение двух независимых движений: равномерного движения вдоль горизонтальной оси (оси Х) и равноускоренного движения вдоль вертикальной оси (оси Y) (рис. 1).

Проекции скорости тела, следовательно, изменяются со временем следующим образом:

,

где – начальная скорость, α – угол бросания.

Координаты тела, следовательно, изменяются так:

При нашем выборе начала координат начальные координаты (рис. 1) Тогда

Второе значение времени, при котором высота равна нулю, равно нулю, что соответствует моменту бросания, т.е. это значение также имеет физический смысл.

Дальность полета получим из первой формулы (1). Дальность полета – это значение координаты х в конце полета, т.е. в момент времени, равный t 0 . Подставляя значение (2) в первую формулу (1), получаем:

. (3)

Из этой формулы видно, что наибольшая дальность полета достигается при значении угла бросания, равном 45 градусов.

Наибольшую высоту подъема брошенного тела можно получить из второй формулы (1). Для этого нужно подставить в эту формулу значение времени, равное половине времени полета (2), т.к. именно в средней точке траектории высота полета максимальна. Проводя вычисления, получаем

Если начальная скорость брошенного тела направлена вверх под некоторым углом к горизонту, то в начальный момент тело имеет составляющие начальной скорости как в горизонтальном, так и в вертикальном направлениях (рис. 178).

Рис. 178. Траектория тела, брошенного под углом к горизонту (в отсутствие сопротивления воздуха)

Задача отличается от рассмотренной в предыдущем параграфе тем, что начальная скорость не равна нулю и для движения по вертикали. Для горизонтальной же составляющей все сказанное остается в силе.

Введем координатные оси: ось , направленную по вертикали вверх, и горизонтальную ось , расположенную в одной вертикальной плоскости с начальной скоростью . Проекция начальной скорости на ось равна , а на ось равна (при показанном на рис. 178 направление осей и обе проекции положительны). Ускорение тела равно и, следовательно, все время направлено по вертикали вниз. Поэтому проекция ускорения на ось равна - , а на ось - нулю.

Поскольку составляющая ускорения в направлении оси отсутствует, проекция скорости на ось остается постоянной и равной своему начальному значению . Следовательно, движение проекции тела на ось будет равномерным. Движение проекции тела на ось происходит в обоих направлениях - вверх и вниз - с одинаковым ускорением . Поэтому на прохождение пути вверх от произвольной высоты до высоты подъема к затрачивается такое же время , как и на прохождение пути вниз от высоты до . Отсюда следует, что симметричные относительно вершины точки (например, точки и ) лежат на одинаковой высоте. А это означает, что траектория симметрична относительно точки . Но характер траектории тела после точки мы уже выяснили в § 112. Это - парабола, которую описывает тело, летящее с горизонтальной начальной скоростью. Следовательно, все то, что мы говорили относительно траектории тела в предыдущем параграфе, в равной мере относится и к рассматриваемому случаю, только вместо «половины параболы» тело описывает «полную параболу» , симметричную относительно точки .

Проверить полученный результат можно также при помощи струи воды, вытекающей из наклонно поставленной трубки (рис, 179). Если позади струи поместить экран с заранее начерченными параболами, то можно увидеть, что струи воды также представляют собой параболы.

Рис. 179. Струя имеет форму параболы, тем более вытянутой, чем больше начальная скорость струи

Высота подъема и расстояние, которое пройдет брошенное тело в горизонтальном направлении до возвращения на ту высоту, с которой тело начало свое движение, т. е. расстояние на рис. 178, зависят от модуля и направления начальной скорости . Прежде всего, при данном направлении начальной скорости и высота и горизонтальное расстояние тем больше, чем больше модуль начальной скорости (рис. 179).

Для одинаковых по модулю начальных скоростей расстояние, которое проходит тело в горизонтальном направлении до возвращения на первоначальную высоту, зависит от направления начальной скорости (рис. 180). При увеличении угла между скоростью и горизонтом это расстояние сначала увеличивается, при угле в достигает наибольшего значения, а затем снова начинает уменьшаться.

Проведем расчет движения тела, брошенного вверх под углом к горизонту с начальной скоростью (рис. 178). Напомним, что проекция скорости тела на ось постоянна и равна . Поэтому координата тела в момент времени равна

. (113.1)

Рис. 180. При увеличении наклона струи, вытекающей с данной скоростью, расстояние, на которое она бьет, сначала увеличивается, достигает наибольшего значения при наклоне в , а затем уменьшается

Движение проекции тела на ось будет сначала равнозамедленным. После того как тело достигнет вершины траектории , проекция скорости станет отрицательной, т. е. одного знака с проекцией ускорения, вследствие чего начнется равноускоренное движение тела вниз. Проекция скорости на ось изменяется со временем по закону

. (113.2)

В вершине траектории скорость тела имеет только горизонтальную составляющую, а обращается в нуль. Чтобы найти момент времени , в который тело достигнет вершины траектории, подставим в формулу (113.2) вместо и приравняем получившееся выражение нулю:

; отсюда (113.3)

Определяемое формулой (113.3) значение дает время, за которое брошенное тело достигает вершины траектории. Если точка бросания и точка падения тела лежат на одном уровне, то все время полета будет равно :, при т. е. при бросании тела вертикально вверх.

113.1. Камень, брошенный с земли вверх под углом к горизонту, падает обратно на землю на расстоянии 14 м. Найти горизонтальную и вертикальную составляющие начальной скорости камня, если весь полет продолжался 2 с. Найти наибольшую высоту подъема камня над землей. Сопротивлением воздуха пренебречь.

113.2. Пожарный направляет струю воды на крышу дома высоты 15 м. Над крышей дома струя поднимается на 5 м. На каком расстоянии от пожарного (считая по горизонтали) струя упадет на крышу, если она вырывается из шланга со скоростью 25 м/с? Сопротивлением воздуха пренебречь.