Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Как рассчитать стены из кладки на устойчивость.  О минимальной толщине несущих кирпичных стен Расчет отдельно стоящей кирпичной стены

Как рассчитать стены из кладки на устойчивость.  О минимальной толщине несущих кирпичных стен Расчет отдельно стоящей кирпичной стены

В случае самостоятельного проектирования кирпичного дома возникает острая необходимость рассчитать, сможет ли выдержать кирпичная кладка те нагрузки, которые заложены в проекте. Особенно серьёзная ситуация складывается на участках кладки, ослабленных оконными и дверными проёмами. В случае большой нагрузки эти участки могут не выдержать и подвергнуться разрушению.

Точный расчет устойчивости простенка к сжатию вышележащими этажами достаточно сложен и определяется формулами, заложенными в нормативном документе СНиП-2-22-81 (далее ссылка – <1>). В инженерных расчетах прочности стены к сжатию учитывается множество факторов, включая конфигурацию стены, сопротивление сжатию, прочность данного типа материалов и многое другое. Однако приблизительно, «на глазок», можно прикинуть резистентность стены к сжатию, воспользовавшись ориентировочными таблицами, в которых прочность (в тоннах) увязана в зависимость от ширины стенки, а также марок кирпича и раствора. Таблица составлена для показателя высоты стены 2,8 м.

Таблица прочность кирпичной стенки, тонн (пример)

Марки Ширина участка, см
кирпич раствор 25 51 77 100 116 168 194 220 246 272 298
50 25 4 7 11 14 17 31 36 41 45 50 55
100 50 6 13 19 25 29 52 60 68 76 84 92

В случае, если значение ширины простенка находится в интервале между указанными, необходимо ориентироваться на минимальное число. Вместе с тем, следует помнить, что в таблицах учтены не все факторы, которые могут корректировать устойчивость, прочность конструкции и сопротивление кирпичной стенки к сжатию в достаточно широком диапазоне.

По времени нагрузки бывают временные и постоянные.

Постоянные:

  • вес элементов сооружений (вес ограждений, несущих и других конструкций);
  • давление грунтов и горных пород;
  • гидростатическое давление.

Временные:

  • вес временных сооружений;
  • нагрузки от стационарных систем и оборудования;
  • давление в трубопроводах;
  • нагрузки от складируемых изделий и материалов;
  • климатические нагрузки (снеговые, гололёдные, ветровые и т.д.);
  • и многие другие.

При анализе нагруженности конструкций обязательно следует учитывать суммарные эффекты. Ниже приведён пример подсчёта основных нагрузок на простенки первого этажа здания.

Нагруженность кирпичной кладки

Для учёта воздействующей на проектируемый участок стены силы нужно суммировать нагрузки:


В случае малоэтажного строительства задача сильно упрощается, и многими факторами временной нагрузки можно пренебречь, задавая определённый запас прочности на этапе проектирования.

Однако в случае строительства 3 и более этажных сооружений необходим тщательный анализ по специальным формулам, учитывающим сложение нагрузок от каждого этажа, угол приложения силы и многое другое. В отдельных случаях прочность простенка достигается армированием.

Пример расчёта нагрузок

Данный пример показывает анализ действующих нагрузок на простенки 1-го этажа. Здесь учтены только постоянно действующие нагрузка от различных конструкционных элементов здания, с учётом неравномерности веса конструкции и углом приложения сил.

Исходные данные для анализа:

  • количество этажей – 4 этажа;
  • толщина стены из кирпичей Т=64см (0,64 м);
  • удельный вес кладки (кирпич, раствор, штукатурка) М=18 кН/м3 (показатель взят из справочных данных, табл. 19 <1>);
  • ширина оконных проемов составляет: Ш1=1,5 м;
  • высота оконных проемов — В1=3 м;
  • сечение простенка 0,64*1,42 м (нагружаемая площадь, куда приложен вес вышележащих конструктивных элементов);
  • высота этажа Вэт=4,2 м (4200 мм):
  • давление распределено под углом 45 градусов.
  1. Пример определения нагрузки от стены (слой штукатурки 2 см)

Нст=(3-4Ш1В1)(h+0,02)Мyf = (*3-4*3*1,5)* (0,02+0,64) *1,1 *18=0, 447МН.

Ширина нагруженной площади П=Вэт*В1/2-Ш/2=3*4,2/2,0-0,64/2,0=6 м

Нп =(30+3*215)*6 = 4,072МН

Нд=(30+1,26+215*3)*6 = 4,094МН

Н2=215*6 = 1,290МН,

в том числе Н2l=(1,26+215*3)*6= 3,878МН

  1. Собственный вес простенков

Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН

Общая нагрузка будет результатом сочетания указанных нагрузок на простенки здания, для её подсчета выполняется суммирование нагрузок от стенки, от перекрытий 2второго этажа и веса проектируемого участка).

Схема анализа нагрузки и прочности конструкции

Для подсчета простенка кирпичной стенки потребуются:

  • протяжённость этажа (она же высота участка) (Вэт);
  • число этажей (Чэт);
  • толщина стены (Т);
  • ширина кирпичной стены (Ш);
  • параметры кладки (тип кирпича, марка кирпича, марка раствора);
  1. Площадь простенка (П)
  1. По таблице 15 <1> необходимо определить коэффициент а (характеристика упругости). Коэффициент зависит от типа, марки кирпича и раствора.
  2. Показатель гибкости (Г)
  1. В зависимости от показателей а и Г, по таблице 18 <1> нужно посмотреть коэффициент изгиба ф.
  2. Нахождение высоты сжатой части

где е0 – показатель экстренсиситета.

  1. Нахождение площади сжатой части сечения

Псж = П*(1-2 е0/Т)

  1. Определение гибкости сжатой части простенка

Гсж=Вэт/Всж

  1. Определение по табл. 18 <1> коэффициент фсж, исходя из Гсж и коэффициента а.
  2. Расчет усредненного коэффициента фср

Фср=(ф+фсж)/2

  1. Определение коэффициента ω (таблица 19 <1>)

ω =1+э/Т<1,45

  1. Расчет силы, воздействующей на сечение
  2. Определение устойчивости

У=Кдв*фср*R*Псж* ω

Кдв – коэффициент длительного воздействия

R – сопротивление кладки сжатию, можно определить по таблице 2 <1>, в МПа

  1. Сверка

Пример расчета прочности кладки

— Вэт — 3,3 м

— Чэт — 2

— Т — 640 мм

— Ш — 1300 мм

— параметры кладки (глиняный кирпич, изготовленный методом пластического прессования, цементно-песчаный раствор, марка кирпича — 100, марка раствора — 50)

  1. Площадь (П)

П=0,64*1,3=0,832

  1. По таблице 15 <1> определяем коэффициент а.
  1. Гибкость (Г)

Г =3,3/0,64=5,156

  1. Коэффициент изгиба (таблица 18 <1>).
  1. Высота сжатой части

Всж=0,64-2*0,045=0,55 м

  1. Площадь сжатой части сечения

Псж = 0,832*(1-2*0,045/0,64)=0,715

  1. Гибкость сжатой части

Гсж=3,3/0,55=6

  1. фсж=0,96
  2. Расчет фср

Фср=(0,98+0,96)/2=0,97

  1. По табл. 19 <1>

ω =1+0,045/0,64=1,07<1,45


Для определения действующей нагрузки необходим расчет веса всех элементов конструкции, оказывающих воздействие на проектируемый участок здания.

  1. Определение устойчивости

У=1*0,97*1,5*0,715*1,07=1,113 МН

  1. Сверка

Условие выполнено, прочность кладки и прочность её элементов достаточна

Недостаточное сопротивление простенка

Что делать, если расчетное сопротивление простенков давлению недостаточно? В этом случае необходимо укрепление стенки при помощи армирования. Ниже приведён пример анализа необходимой модернизации конструкции при недостаточном сопротивлении сжатию.

Для удобства можно воспользоваться табличными данными.

В нижней строке представлены показатели для стенки, армированной проволочной сеткой диаметра 3 мм, с ячейкой 3 см, класса В1. Армирование каждого третьего ряда.

Прирост прочности составляет около 40 %. Обычно данное сопротивление сжатию оказывается достаточным. Лучше сделать подробный анализ, подсчитав изменение прочностных характеристик в соответствии с применяемым способом усиления конструкции.

Ниже приведён пример подобного вычисления

Пример расчета усиления простенков

Исходные данные – см. предыдущий пример.

  • высота этажа — 3,3 м;
  • толщина стены– 0,640 м;
  • ширина кладки 1,300 м;
  • типовые характеристики кладки (тип кирпичей – глиняные кирпичи, изготовленные методом прессования, тип раствора – цементный с песком, марка кирпичей — 100, раствора — 50)

В этом случае условие У>=Н не выполняется (1,113<1,5).

Требуется увеличить сопротивление сжатию и прочность конструкции.

Коэффициент усиления

k=У1/У=1,5/1,113=1,348,

т.е. надо увеличить прочность конструкции на 34,8%.

Усиление железобетонной обоймой

Усиление производится обоймой из бетона В15 толщиной 0,060 м. Вертикальные стержни 0,340 м2, хомуты 0,0283 м2 с шагом 0,150 м.

Размеры сечения усиленной конструкции:

Ш_1=1300+2*60=1,42

Т_1=640+2*60=0,76

При таких показателях условие У>=Н выполняется. Сопротивление сжатию и прочность конструкции достаточны.

В.В. Габрусенко

Нормы проектирования (СНиП II-22-81) разрешают принимать минимальную толщину несущих каменных стен для кладки I группы в пределах от 1/20 до 1/25 высоты этажа. При высоте этажа до 5 м в эти ограничения вполне вписывается кирпичная стена толщиной всего 250 мм (1 кирпич), чем и пользуются проектировщики - особенно часто в последнее время.

С точки зрения формальных требований, проектировщики действуют на вполне законном основании и энергично сопротивляются, когда кто-то пытается их намерениям препятствовать.

Между тем тонкие стены наиболее сильно реагируют на всевозможные отклонения от проектных характеристик. Причем даже на такие, которые официально допустимы Нормами правил производства и приемки работ (СНиП 3.03.01-87). В их числе: отклонения стен по смещению осей (10 мм), по толщине (15 мм), по отклонению на один этаж от вертикали (10 мм), по смещению опор плит перекрытия в плане (6…8 мм) и пр.

К чему приводят эти отклонения, рассмотрим на примере внутренней стены высотой 3,5 м и толщиной 250 мм из кирпича марки 100 на растворе марки 75, несущей расчетную нагрузку от перекрытия 10 кПа (плиты пролетом по 6 м с обеих сторон) и веса вышележащих стен. Стена рассчитана на центральное сжатие. Её расчетная несущая способность, определенная по СНиП II-22-81, составляет 309 кН/м.

Допустим, что нижняя стена смещена от оси на 10 мм влево, а верхняя стена - на 10 мм вправо (рисунок). Кроме того, на 6 мм вправо от оси смещены плиты перекрытия. То есть, нагрузка от перекрытия N 1 = 60 кН/м приложена с эксцентриситетом 16 мм, а нагрузка от вышележащей стены N 2 - с эксцентриситетом 20 мм, тогда эксцентриситет равнодействующей составит 19 мм. При таком эксцентриситете несущая способность стены снизится до 264 кН/м, т.е. на 15%. И это - при наличии всего двух отклонений и при условии, что отклонения не превышают допустимые Нормами значения.

Если добавить сюда несимметричное нагружение перекрытий временной нагрузкой (справа больше, чем слева) и «допуски», которые позволяют себе строители, - утолщение горизонтальных швов, традиционно плохое заполнение вертикальных швов, некачественная перевязка, искривление или наклон поверхности, «подмолаживание» раствора, чрезмерное использование половняка и т. д. и т. п., - то несущая способность может снизиться еще не менее чем на 20…30%. В итоге перегрузка стены превысит величину 50…60%, за которой начинается необратимый процесс разрушения. Процесс этот проявляется не всегда сразу, бывает - спустя годы после завершения строительства. Причем надо иметь в виду, что чем меньше сечение (толщина) элементов, тем сильнее отрицательное влияние перегрузок, поскольку с уменьшением толщины уменьшается возможность перераспределения напряжений в пределах сечения за счет пластических деформаций кладки.

Если добавить ещё неравномерные деформации оснований (вследствие замачивания грунтов), чреватые поворотом подошвы фундамента, «зависанием» наружных стен на внутренних несущих стенах, образованием трещин и снижением устойчивости, то речь уже пойдет не просто о перегрузке, а о внезапном обрушении.

Сторонники тонких стен могут возразить, что для всего этого нужно слишком большое сочетание дефектов и неблагоприятных отклонений. Ответим им: подавляющее большинство аварий и катастроф в строительстве происходит именно тогда, когда в одном месте и в одно время собирается несколько негативных факторов - в этом случае «слишком много» их не бывает.

Выводы

    Толщина несущих стен должна составлять не менее 1,5 кирпичей (380 мм). Стены толщиной в 1 кирпич (250 мм) допускается применять только для одноэтажных или для последних этажей многоэтажных зданий.

    Это требование следует внести в будущие Территориальные нормы проектирования строительных конструкций и зданий, необходимость в разработке которых давно назрела. Пока же можно только порекомендовать проектировщикам избегать применения несущих стен толщиной менее 1,5 кирпичей.

Требуется определить расчетную несущую способность участка стены здания с жесткой конструктивной схемой*

Расчет несущей способности участка несущей стены здания с жесткой конструктивной схемой.

К участку стены прямоугольного сечения приложена расчетная про­дольная сила N = 165 кН (16,5 тс), от длительных нагрузокN g = 150 кН (15 тс), кратковременныхN st = 15 кН (1,5тс). Размер сечения - 0,40x1,00 м, высота этажа - 3 м, нижние и верхние опоры стены - шарнирные, не­подвижные. Стена запроектирована из четырехслойных блоков проектной марки по прочности М50, с применением строительного раствора проектной марки М50.

Требуется проверить несущую способность элемента стены в середине высоты этажа при возведении здания в летних условиях.

В соответствии с п. для несущих стен толщиной 0,40 м случайный эксцентриситет не следует учитывать. Расчет производим по формуле

N m g RA  ,

где N - расчетная продольная сила.

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Площадь сечения элемента

А = 0,40 ∙ 1,0 = 0,40м.

Расчетное сопротивление сжатию кладки R по табл.1 настоящих Ре­комендаций с учетом коэффициента условий работы с = 0,8, см. п. , равно

R = 9,2-0,8 = 7,36 кгс/см 2 (0,736МПа).

Пример расчета, приведенный в настоящем Приложении, выполнен по формулам, таблицам и пунктам СНиП П-22-81 * (приведены в квадратных скобках) и настоящим Рекомендациям.

Расчетная длина элемента согласно черт., п. равна

l 0 = Η = З м.

Гибкость элемента равна

.

Упругая характеристика кладки , принимаемая по данным «Реко­мендациям», равна

Коэффициент продольного изгиба определяем по табл.

Коэффициент, учитывающий влияние длительной нагрузки при тол­щине стены 40 см, принимаем m g = 1.

Коэффициент для кладки из четырехслойных блоков принимается по табл. равным 1,0.

Расчетная несущая способность участка стены N cc равна

N cc = mg m g R A  =1,0 ∙ 0,9125 ∙ 0,736 ∙ 10 3 ∙ 0,40 ∙ 1,0 = 268,6 кН (26,86 тс).

Расчетная продольная сила N меньшеN cc :

N = 165 кН < N cc = 268,6 кН.

Следовательно, стена удовлетворяет требованиям по несущей способ­ности.

II пример расчета сопротивления теплопередаче стен зданий из четырехслойных теплоэффективных блоков

Пример. Определить сопротивление теплопередаче стены толщиной 400 мм из четырехслойных теплоэффективных блоков. Внутренняя поверхность стены со стороны помещения облицовывается гипсокартонными листами.

Стена проектируется для помещений с нормальной влажностью и умеренного наружного климата, район строительства - г. Москва и Мос­ковская область.

При расчете принимаем кладку из четырехслойных блоков со слоями, имеющими характеристики:

Внутренний слой - керамзитобетон толщиной 150 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Наружный слой - поризованный керамзитобетон толщиной 80 мм, плотностью 1800 кг/м 3 -= 0,92 Вт/м ∙ 0 С;

Теплоизоляционный слой - полистирол толщиной 170 мм, - 0,05 Вт/м ∙ 0 С;

Сухая штукатурка из гипсовых обшивочных листов толщиной 12 мм - = 0,21 Вт/м ∙ 0 С.

Приведенное сопротивление теплопередаче наружной стены рассчиты­вается по основному конструктивному элементу, наиболее повторяемому в здании. Конструкция стены здания с основным конструктивным элементом приведена на рис.2, 3. Требуемое приведенное сопротивление теплопередаче стены определяется по СНиП 23-02-2003 «Тепловая защита зданий», исходя из условий энергосбережения по таблице 1б* для жилых зданий.

Для условий г. Москвы и Московской области требуемое сопротивле­ние теплопередаче стен зданий (II этап)

ГСОП = (20 + 3,6)∙213 = 5027 град. сут.

Общее сопротивление теплопередаче R o принятой конструкции стены определяется по формуле

,(1)

где и - коэффициенты теплоотдаче внутренней и наружной по­верхности стены,

принимаемые по СНиП 23-2-2003- 8,7 Вт/м 2 ∙ 0 С и 23 Вт/м 2 ∙ 0 С

соответственно;

R 1 ,R 2 ...R n - термические сопротивления отдельных слоев конструкций блока

n - толщина слоя (м);

n - коэффициент теплопроводности слоя (Вт/м 2 ∙ 0 С)

= 3,16 м 2 ∙ 0 С/Вт.

Определяем приведенное сопротивление теплопередаче стены R o без штукатурного внутреннего слоя.

R o =
= 0,115 + 0,163 + 3,4 + 0,087 + 0,043 = 3,808 м 2 ∙ 0 С/Вт.

При необходимости применения со стороны помещения внутреннего штукатурного слоя из гипсокартонных листов сопротивления теплопередаче стены увеличивается на

R шт. =
= 0,571 м 2 ∙ 0 С/Вт.

Термическое сопротивление стены составит

R o = 3,808 + 0,571 = 4,379 м 2 ∙ 0 С/Вт.

Таким образом, конструкция наружной стены из четырехслойных теплоэффективных блоков толщиной 400 мм с внутренним штукатурным слоем из гипсокартонных листов толщиной 12 мм общей толщиной 412 мм имеет приведенное сопротивление теплопередаче равное 4,38 м 2 ∙ 0 С/Вт удовлетво­ряет требованиям, предъявляемым к теплозащитным качествам наружных ограждающих конструкций зданий в климатических условиях г. Москвы и Московской области.

Чтобы выполнить расчет стены на устойчивость, нужно в первую очередь разобраться с их классификацией (см. СНиП II -22-81 «Каменные и армокаменные конструкции», а также пособие к СНиП) и понять, какие бывают виды стен:

1. Несущие стены - это стены, на которые опираются плиты перекрытия, конструкции крыши и т.п. Толщина этих стен должна быть не менее 250 мм (для кирпичной кладки). Это самые ответственные стены в доме. Их нужно рассчитывать на прочность и устойчивость.

2. Самонесущие стены - это стены, на которые ничто не опирается, но на них действует нагрузка от всех вышележащих этажей. По сути, в трехэтажном доме, например, такая стена будет высотой в три этажа; нагрузка на нее только от собственного веса кладки значительная, но при этом очень важен еще вопрос устойчивости такой стены - чем стена выше, тем больше риск ее деформаций.

3. Ненесущие стены - это наружные стены, которые опираются на перекрытие (или на другие конструктивные элементы) и нагрузка на них приходится с высоты этажа только от собственного веса стены. Высота ненесущих стен должна быть не более 6 метров, иначе они переходят в категорию самонесущих.

4. Перегородки - это внутренние стены высотой менее 6 метров, воспринимающие только нагрузку от собственного веса.

Разберемся с вопросом устойчивоcти стен.

Первый вопрос, возникающий у «непосвященного» человека: ну куда может деться стена? Найдем ответ с помощью аналогии. Возьмем книгу в твердом переплете и поставим ее на ребро. Чем больше формат книги, тем меньше будет ее устойчивость; с другой стороны, чем книга будет толще, тем лучше она будет стоять на ребре. Со стенами та же ситуация. Устойчивость стены зависит от высоты и толщины.

Теперь возьмем наихудший вариант: тонкую тетрадь большого формата и поставим на ребро - она не просто потеряет устойчивость, но еще и изогнется. Так и стена, если не будут соблюдены условия по соотношению толщины и высоты, начнет выгибаться из плоскости, а со временем - трещать и разрушаться.

Что нужно, чтобы избежать такого явления? Нужно изучить п.п. 6.16...6.20 СНиП II -22-81.

Рассмотрим вопросы определения устойчивости стен на примерах.

Пример 1. Дана перегородка из газобетона марки М25 на растворе марки М4 высотой 3,5 м, толщиной 200 мм, шириной 6 м, не связанная с перекрытием. В перегородке дверной проем 1х2,1 м. Необходимо определить устойчивость перегородки.

Из таблицы 26 (п. 2) определяем группу кладки - III . Из таблиц ы 28 находим? = 14. Т.к. перегородка не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 9,8.

k 1 = 1,8 - для перегородки, не несущей нагрузки при ее толщине 10 см, и k 1 = 1,2 - для перегородки толщиной 25 см. По интерполяции находим для нашей перегородки толщиной 20 см k 1 = 1,4;

k 3 = 0,9 - для перегородки с проемами;

значит k = k 1 k 3 = 1,4*0,9 = 1,26.

Окончательно β = 1,26*9,8 = 12.3.

Найдем отношение высоты перегородки к толщине: H /h = 3,5/0,2 = 17,5 > 12.3 - условие не выполняется, перегородку такой толщины при заданной геометрии делать нельзя.

Каким способом можно решить эту проблему? Попробуем увеличить марку раствора до М10, тогда группа кладки станет II , соответственно β = 17, а с учетом коэффициентов β = 1,26*17*70% = 15 < 17,5 - этого оказалось недостаточно. Увеличим марку газобетона до М50, тогда группа кладки станет I , соответственно β = 20, а с учетом коэффициентов β = 1,26*20*70% = 17.6 > 17,5 - условие выполняется. Также можно было не увеличивая марку газобетона, заложить в перегородке конструктивное армирование согласно п. 6.19. Тогда β увеличивается на 20% и устойчивость стены обеспечена.

Пример 2. Дана наружная ненесущая стена из облегченной кладки из кирпича марки М50 на растворе марки М25. Высота стены 3 м, толщина 0,38 м, длина стены 6 м. Стена с двумя окнами размером 1,2х1,2 м. Необходимо определить устойчивость стены.

Из таблицы 26 (п. 7) определяем группу кладки - I . Из таблиц ы 28 находим β = 22. Т.к. стена не закреплена в верхнем сечении, нужно снизить значение β на 30% (согласно п. 6.20), т.е. β = 15,4.

Находим коэффициенты k из таблиц ы 29:

k 1 = 1,2 - для стены, не несущей нагрузки при ее толщине 38 см;

k 2 = √А n /A b = √1,37/2,28 = 0,78 - для стены с проемами, где A b = 0,38*6 = 2,28 м 2 - площадь горизонтального сечения стены с учетом окон, А n = 0,38*(6-1,2*2) = 1,37 м 2 ;

значит k = k 1 k 2 = 1,2*0,78 = 0,94.

Окончательно β = 0,94*15,4 = 14,5.

Найдем отношение высоты перегородки к толщине: H /h = 3/0,38 = 7,89 < 14,5 - условие выполняется.

Необходимо также проверить условие, изложенное в п. 6.19:

Н + L = 3 + 6 = 9 м < 3kβh = 3*0,94*14,5*0,38 = 15.5 м - условие выполняется, устойчивость стены обеспечена.

Внимание! Для удобства ответов на ваши вопросы создан новый раздел "БЕСПЛАТНАЯ КОНСУЛЬТАЦИЯ" .

class="eliadunit">

Комментарии

« 3 4 5 6 7 8

0 #212 Алексей 21.02.2018 07:08

Цитирую Иринa:

профили арматуру не заменят


Цитирую Иринa:

насчет фундамента: допустимы пустоты в теле бетона, но не снизу, чтобы не уменьшать площадь опирания, которая отвечает за несущую способность. То есть снизу должен быть тонкий слой армированного бетона.
А какой фундамент - лента или плита? Какие грунты?

Груны пока не известны, вероятнее всего будет чистое поле суглинки всякие, изначально думал плиту, но низковато выйдет, хочется по-выше, а ещё же придётся верхний плодородный слой снимать, поэтому склоняюсь к ребристому или даже коробчатому фундаменту. Несущей способности грунта много мне не надо - дом всё-таки решили в 1 этаж, да и керамзитобетон не очень тяжёлый, промерзание там не более 20 см (хотя по старым советским нормативам 80).

Думаю снять верхний слой 20-30 см, выложить геотекстиль, засыпать песочком речным и разровнять с уплотнением. Затем легкая подготовительная стяжка - для выравнивая (в неё вроде бы даже арматуру не делают, хотя не уверен), поверх гидроизоляция праймером
а дальше вот уже диллема - даже если связать каркасы арматуры ширина 150-200мм х 400-600мм высоты и уложить их с шагом в метр, то надо ещё пустоты чем-то сформировать между этими каркасами и в идеале эти пустоты должны оказаться поверх арматуры (да ещё и с некоторым расстоянием от подготовки, но при этом сверху их тоже надо будет проармировать тонким слоем под 60-100мм стяжку) - думаю ППС плиты замонолитить в качестве пустот - теоретически можно будет такое залить в 1 заход с вибрированием.

Т.е. как бы с виду плита 400-600мм с мощным армированием каждые 1000-1200мм объемная структура единая и легким в остальных местах, при этом внутри примерно 50-70% объёма будет пенопласт (в не нагруженных местах) - т.е. по расходу бетона и арматуры - вполне сравнимо с плитой 200мм, но + куча относительно дешового пенопласта и работы больше.

Если как-то бы ещё заменить пенопласт на простой грунт/песок - будет ещё лучше, но тогда вместо легкой подготовки разумнее делать нечто более серьёзное с армированием и выносом арматуры в балки - в общем тут не хватает мне и теории и практического опыта.

0 #214 Иринa 22.02.2018 16:21

Цитата:

жаль, вообще просто пишут что в легких бетонах (керамзитобетон) плохая связь с арматурой - как с этим бороться? я так понимаю чем прочнее бетон и чем больше площадь поверхности арматуры - тем лучше будет связь, т.е. надо керамзитобетон с добавлением песка (а не только керамзит и цемент) и арматуру тонкую, но чаще

зачем с этим бороться? нужно просто учитывать в расчете и при конструировании. Понимаете, керамзитобетон - достаточно хороший стеновой материал со своим списком достоинств и недостатков. Как и любые другие материалы. Вот если бы вы захотели использовать его для монолитного перекрытия, я бы вас отговаривала, потому что
Цитата:

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена , нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях - остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (М рз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

Пример расчета кирпичной стены.

Несущая способность кирпичной кладки зависит от многих факторов - от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Выбор расчетного сечения .

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II , так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты m g и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

Давайте рассмотрим сечение I-I.

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P 1 =1,8т и вышележащих этажей G=G п +P 2 +G 2 = 3,7т:

N = G + P 1 = 3,7т +1,8т = 5,5т

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P 1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P 1) приложена не по центру сечения, а на расстоянии от него равном:

e = h/2 - a/3 = 250мм/2 - 150мм/3 = 75 мм = 7,5 см,

то она будет создавать изгибающий момент (М) в сечении I-I. Момент - это произведение силы на плечо.

M = P 1 * e = 1,8т * 7,5см = 13,5 т*см

Тогда эксцентриситет продольной силы N составит:

e 0 = M / N = 13,5 / 5,5 = 2,5 см

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета e ν =2см, тогда общий эксцентриситет равен:

e 0 = 2,5 + 2 = 4,5 см

y=h/2=12,5см

При e 0 =4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кл адки внецентренно сжатого элемента определяется по формуле:

N ≤ m g φ 1 R A c ω

Коэффициенты m g и φ 1 в рассматриваемом сечении I-I равны 1.