Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения. Как подключить лазерный диод, схема Гетероструктурные лазерные диоды

Лазерный гравер своими руками: материалы, сборка, установка программного обеспечения. Как подключить лазерный диод, схема Гетероструктурные лазерные диоды

Сегодня во многих приборах бытового и любого другого плана используются лазерные диоды (полупроводники) для создания целенаправленного луча. И самым важным моментом в самостоятельной сборке лазерной установки является подключение диода.

Лазерный диод

Из этой статьи вы узнаете обо всем, что нужно для качественного подключения лазерного диода.

Особенности полупроводника и его подсоединения

От led диода лазерная модель отличается очень маленькой площадью кристалла. В связи с чем наблюдается значительная концентрация мощности, что приводит к кратковременному превышению значения тока в переходе. Из-за этого такой диод может легко перегореть. Поэтому, чтобы лазерный диод прослужил как можно дольше, необходима специальная схема – драйвер.

Обратите внимание! Любой диод лазерного типа необходимо питать стабилизированным током. Хоте некоторые разновидности, дающие красный свет, ведут себя достаточно стабильно, даже если имеют не стабильное питание.

Красный лазерный диод

Но, даже если используют драйвер, диод нельзя подключать к нему. Здесь необходим еще «датчик тока». В его роли часто выступает общий провод низкоомного резистора, который включается в разрыв между этими деталями. В результате схема имеет один существенный недостаток — минус питания оказывается «оторван» от минуса, имеющегося в питании схемы. Кроме этого данная схема имеет еще один минус — на токоизмерительном резисторе происходит потеря мощности.
Собираясь подключить лазерный диод, необходимо понимать, к какому драйверу его следует подключать.

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Особенности соединения

Схема, которая будет использоваться для питания лазерного диода, может содержать в себе не только драйвер и «датчик тока», но и источник питания – аккумулятор или батарею.

Вариант схемы подключения

Обычно аккумулятор/батарея в таком случае должны иметь напряжение в 9 В. Кроме них в схему обязательно должны входить лазерный модуль и токоограничивающий резистор.

Обратите внимание! Чтобы не тратиться на диод, его можно извлечь из DVD привода. При этом это должен быть именно компьютерное устройство, а не стандартный проигрыватель.

Компьютерный DVD-привод

Лазерный полупроводник имеет три вывода (ноги), два из которых размещены по бокам, а один – посредине. Средний выход следует подключать к минусовой клемме выбранного источника питания. Положительную клемму нужно подсоединять к левой или правой «ноге». Выбор левой или правой стороны зависит от производителя полупроводника. Поэтому нужно определить, какой именно вывод будет: «+» и «-». Для этого на полупроводник следует подать питание. Здесь отлично справятся две батарейки, каждая по 1,5 вольт, а также резистор в 5 Ом.
Минусовый вывод у источника питания следует подключить к центральному минусовому выводу, определенного у диода. При этом плюсовая сторона должна подсоединяться к каждой из двух оставшихся клемм полупроводника поочередно. Таким образом его можно подключать и к микроконтроллеру.
Питание для лазерного диода можно осуществить с помощью 2-3 пальчиковых батареек. Но при желании в схему можно включить и аккумулятор от мобильного телефона. В таком случае необходимо помнить, что понадобиться еще дополнительный ограничительный резистор на 20 Ом.

Подсоединение к сети 220 В

Полупроводник можно запитать от 220 В. Но здесь необходимо создать дополнительную защиту от высокочастотных всплесков напряжения.

Вариант схемы питания диода от сети в 220 В

Такая схема должна включать в себя следующие элементы:

  • стабилизатор напряжения;
  • токоограничивающий резистор
  • конденсатор;
  • лазерный диод.

Сопротивление и стабилизатор будут образовывать блок, который сможет препятствовать токовым выбросам. Для предотвращения всплесков напряжения необходим стабилитрон. Конденсатор будет препятствовать появлению высокочастотных всплесков. Если такая схема была правильно собрана, то стабильная работа полупроводника будет гарантирована.

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

Проверка диода

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет.
Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Заключение

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.


Расчет люменов на одного квадратного метра под разные помещения

Самосборный лазерный гравер/резак на основе 2,5 Ваттного лазерного модуля.
Если коротко – XY-кинематика, прошивка Marlin и лазерный модуль D8–L2500. Гравер получился что надо -умеет и выжигать, как точками, так и линией, а самое главное - резать!

Сразу напомню про ТБ: при работе с лазером используйте очки (специальные, с учетом длины волны лазера), не направляйте его в глаза. Лазер очень мощный - даже небольшое отраженное излучение может серьезно повредить сетчатку.

Итак, в последнее время я все бился над улучшением лазерного гравера Neje DK-5 с целью увеличения (в первую очередь) рабочей зоны и мощности для обработки различных материалов. В итоге, я пришел к тому, что проще сделать еще один, по образу китайских простеньких граверов на профиле.

За основу я взял китайский комплект на алюминиевом конструкционном профиле 2020 и 2040. Забегая вперед, я скажу, что практика показала – проще делать все на одинаковом профиле 2040, так как значительно повышается удобство монтажа и жесткость рамы (на двойной профиль проще крепить элементы корпусных панелей, ножки, кабель-каналы).

Основа любого лазерного гравера – это лазерный модуль . Опыт работы с диодами, выдранными из всевозможной техники, а также с модулем от Neje у меня был, но захотелось чего-то большего. У китайцев продаются твердотельные лазерные сборки все-в-одном: модуль в виде алюминиевого радиатора цилиндрической (реже) или прямоугольной формы (чаще всего). Внутри радиатора установлен цилиндрик с лазерным диодом, из которого торчат два контакта для подключения питающего тока. Также внутри лазерного модуля установлен (и залит некой субстанцией) токовый драйвер для диода, чаще всего СС (continuous current), реже – драйвер с поддержкой ТТЛ-сигналов для управления мощностью лазера. Часто – имеется вентилятор охлаждения сбоку или с торца радиатора. С другого торца на выходе лазера располагается фокусирующая или коллимирующая линза (в зависимости от назначения модуля). Питание, как правило, бывает 5В или 12В.
Вот пример того, что внутри (фото не мое, с просторов).

Лазерный твердотельные модули (диодные) бывают от сотен милливатт (например, от 0,3 Вт) до нескольких единиц (например, 5,5 китайских ватт). Чем больше мощность, тем выше цена, причем за мощные модули цена настолько высокая, что проще рассмотреть возможность установки трубки СО2, но это совсем другая история. Имейте ввиду, что китайские ватты не всегда соответствуют реальности (очень тяжело оценить реальную мощность излучения). И запросто можно купить один и тот же лазерный диод, промаркированный как 5,5W, так и 8W или 10W. Возможно, они будут отличаться завышенным током на сам диод, что сильно (в разы) сокращает время жизни диода.

Так как хотелось не только выжигать по дереву, но и резать что-либо (пластик, фанера, картон и т.п. – но не металлы!), то модуля от Neje мне уже не хватало, тем более выдранные из сидюков не катят, да и сгорают быстро. Было принято решение поискать и приобрести лазерный модуль на несколько ватт из Китая, в основном я выбирал из лазерных модулей на 450 нанометров (одни из самых доступных).
Существуют следующие разновидности лазерных головок на гирбесте:

1. 2,5Вт 12в ;
2. 0,5 вт 12в ;
3. 0,5 вт 5 в .
Все лазеры на 445нм (фиолетовый лазер), с вентилятором охлаждения и блоком питания в комплекте.

Помимо отличия в мощности, очевидно, что отличается и питающее напряжение. Модули для 5В очень удобны для питания павербанками/батарейками, ну а также для готовых корпусов с приводами на 5В. Не забывайте, что вентилятор тоже должен быть на 5В.
При питании шаговых двигателей от 12В есть смысл приобрести и лазерный модуль на 12В с целью унификации питания гравера (то есть потребуется только 1 БП на 12В). Это как раз мой вариант. В комплекте с D8-2500 идет блок питания на 12В и 5А, что явно за глаза хватает лазерному диоду, и в придачу остается для питания электроники Ramps и сервоприводов.

В итоге я заказал 2,5Вт/12В. Вот что прислали:

Вот несколько фото самого лазерного модуля.

Включил лазер для проверки цепей питания и правильности подключения. Как то не сообразил установить поглощающую подложку, в итоге прожег свой фотофон.

Итак, расскажу про свой проект гравера, в который вылился апгрейд моего Neje. Эдакая каша из топора. Скрутил лазер, снял электронику. Понял, что из этого каши не сваришь. Заменил электронику и лазер. В итоге сам Neje я решил оставить в покое и отложить подальше.

Хочу сказать, что существуют готовые рамы для установки лазера - XY плоттеры. Но я решил собрать раму самостоятельно, тем более это не так уж и сложно.
Идея была очень простая – это применение конструкционного профиля 2020/2040 в качестве рамы и направляющих для простенького гравера формата А3, как в китайских граверах. Жесткость обеспечивается специальными (штатными) соединениями для конструкционного профиля. (внутренние соединители, уголки). Размеры профиля – размеры печатной области (минус каретки). Формат выбирал чуть больше листа А4 с расчетом на материалы небольших размеров. После Neje с его 3.5х3.5 разница просто огромная.

Про электронику: есть варианты для RAMPS/LCD/SD/Marlin или CNCshield/GRBL. Шаговые двигатели демонтировал со старого устройства (nema17 – можно приобрести, они стандартные. Большие усилия не нужны, так как лазерная головка легкая/ Я думаю, при небольших размерах осей можно использовать недорогие nema17 типа 17H2408. Заказал напиленный в размер профиль и фурнитуру (уголки и метизы), плюс ролики для кареток.

В любом случае, если Вас заинтересует самостоятельная сборка принтера, то практически нет проблем найти чертежи для печати на принтере (stl) или чертежи для резки акрила.

Однозначно плюс комплекта лазерного модуля D8-L2500 – это наличие блока питания 12В 5А, что очень удобно. Буду запитывать шаговики от этого же БП.

Что потребуется для сборки

1 Лазерная головка Гравер/выжигатель - 1 шт.
2 Блок питания 12В Для питания лазера и приводов (1 шт, входит в комплект
лазера)
3 Блок питания 5в Для питания платы электроники (опционально)
4 2040 профиль продольные части рамы, Х-ось -2шт х420mm
5 2040 профиль поперечные части рамы - 2 шт х350mm
6 2040 профиль Перекладина Y оси - 1 шт х380mm
7 Nema17 Два по X, один по Y - 3 шт
с приводными не обязательно мощные
шестернями
8 Ремень GT2-6mm Два отрезка по X, один по Y -1,5 метра примерно
9 Концевики Крайние положения X Y осей - 2 шт.
10 RAMPS 1.4 Набор управляющей - 1 шт (*брал все комплектом)
11 Ardu Mega R3 электроники* - 1 шт
12 Display+SD shield+шлейфы - 1 шт.
13 A4988 driver, с радиаторами - 2 шт
14 Набор метизов (винты М3, М4, М5, гайки М3 - Комплект
М4, М5, Т-гайки, шайбы и т.д.) Для крепления рамы, ремней,
двигателей, для сборки кареток,
и т.д.
15 Уголки внутренние Для крепления углов рамы - 4 шт.
16 Ножки или стойки По углам - 4 шт
17 Комплект проводов -К-т
18 Кабель-каналы** - 1,5 метра примерно
19 Ролики Для кареток *** 12 (три каретки по 4 шт)

* Электронику можно заменить на Arduino Uno/Nano и CNC shield c драйверами (A4988/DRVxxxx)
**Есть еще спиральный кабель-канал .
*** Можно использовать по 3 ролика, или разные ролики (по диаметру), в зависимости от выбранных кареток.

По метизам могу подсказать только примерно, брал с запасом разных номиналов, потом по факту смотрел что подойдет. Рекомендую покупать на оптовках или заказать с али (я в итоге потратил в несколько раз больше, покупая в розницу, чем взял бы пару лотов на Али по 50-100 гаек и винтов).
Если каретки из акрила, можно не делать двойную – я перестраховался, из-за этого увеличилась толщина каретки и уменьшилась рабочая зона почти на 6 см. Можно и ролики взять поудобнее, с запрессованной втулкой М5.
Оригинальный вариант OpenBuilds предполагал использование всего 3 роликов - два ходовых и один, помельче, прижимающий.

Для облегчения кареток, вместо нескольких шайб я использовал печатные втулки. Подбирается и делается все за три минуты, печатается примерно также по времени. Можно набирать шайбами или делать другие проставки. При проектировании лучше учитывать небольшой запас по размерам отверстий в плюс, из-за усадки пластика.

Вот что получилось.

Второй проход по гофрокартону. Два прохода делал из-за толщины. Так то картон неплохо режет. К сожалению, не успел приехать второй заказ с удлинителями проводов для сервоприводов и с кабель-каналом – у меня сейчас ограничена рабочая область – провода внатяг идут, так что теста на большом полотне не будет (ну или попозже выложу).

Небольшой минус – работа подобного гравера в квартире это зло))) Очень много дыма от картона и дерева. Пластик и акрил я по этой причине не резал. Нужна хорошая вытяжка.

В планах – сделать ножки, подобие корпуса, убрать провода в каналы (есть возможность пустить провода внутри профиля или по пазам, с фиксацией их клипсами). Очень нужна вентиляция, вытяжка и корпус.
пока в планах адаптировать лазерный модуль для работы с ШИМ заменой драйвера на внешний.
И я нахожусь в поисках программного обеспечения для конвертации изображений в жкод. То, что испоробовал мне не помогло.
Еще есть мысль - можно добавить третью ось с кротким ходом. Это позволит более гибко подстраиваться под материалы с большой толщиной.

Выводы
В целом приобретение данного модуля высвободило мне время, которое уходило на переделки диодов без корпусов. Не надо под каждый подбирать линзу, питание, пихать все в корпус. Стоимость модуля достаточно высокая, но если сравнивать стоимость готовой конструкции лазерного гравера типа такого, то в итоге выгода очевидна. Дело в том, что стоимость лазера – это больше половины стоимости гравера целиком. В остальном – это стоимость профиля, двигателей и электроники (по мелочи).

Не секрет, что каждому из нас в детстве хотелось иметь такое устройство, как лазерная установка, которая могла бы разрезать металлические уплотнения и прожигать стены. В современном мире эта мечта легко воплощается в реальность, поскольку теперь можно соорудить лазер с возможностью резки различных материалов.

Разумеется, в домашних условиях невозможно изготовить настолько мощную лазерную установку, которая будет прорезать железо или дерево. Но при помощи самодельного устройства можно резать бумагу, полиэтиленовое уплотнение или тонкий пластик.

Лазерным устройством можно выжигать различные узоры на листах фанеры или на дереве. Оно может использоваться в качестве подсветки объектов, расположенных в удаленной местности. Область его применения может быть как развлекательной, так и полезной в строительных и монтажных работах, не говоря о реализации творческого потенциала в сфере гравировки по дереву или оргстеклу.

Режущий лазер

Инструменты и принадлежности, которые потребуются для того, чтобы изготовить лазер своими руками:

Рисунок 1. Схема лазерного светодиода.

  • неисправный DVD-RW привод с рабочим лазерным диодом;
  • лазерная указка или портативный коллиматор;
  • паяльник и мелкие провода;
  • резистор на 1 Ом (2 шт.);
  • конденсаторы на 0,1 мкФ и 100 мкФ;
  • аккумуляторы типа ААА (3 шт.);
  • маленькие инструменты типа отвертки, ножика и напильника.

Этих материалов будет вполне достаточно для предстоящих работ.

Итак, для лазерного устройства в первую очередь необходимо подобрать DVD-RW привод с поломкой механического характера, поскольку оптические диоды должны быть в исправности. Если у вас отсутствует износившийся привод, придется приобрести его у людей, которые продают его на запчасти.

При покупке следует учитывать, что большинство приводов от производителя Samsung являются непригодными для изготовления режущего лазера. Дело в том, что эта компания выпускает DVD-приводы с диодами, которые не защищены от наружного воздействия. Отсутствие специального корпуса означает, что лазерный диод подвержен тепловым нагрузкам и загрязнению. Его можно повредить легким прикосновением руки.

Рисунок 2. Лазер из DVD-RW привода.

Оптимальным вариантом для лазера будет привод от производителя LG. Каждая модель оснащается кристаллом с различной степенью мощности. Этот показатель определяется скоростью записывания двухслойных DVD-дисков. Крайне важно, чтобы привод был именно записывающим, поскольку в нем содержится инфракрасный излучатель, который нужен для изготовления лазера. Обычный не подойдет, так как он предназначен только для считывания информации.

DVD-RW со скоростью записи 16Х оснащен красным кристаллом мощностью 180-200 мВт. Привод со скоростью 20Х содержит диод мощностью 250-270 мВт. Высокоскоростные записывающие устройства типа 22Х оборудуются лазерной оптикой, мощность которой достигает 300 мВт.

Вернуться к оглавлению

Разборка DVD-RW привода

Этот процесс должен проделываться с тщательной осторожностью, поскольку внутренние детали имеют хрупкую структуру, их легко повредить. Демонтировав корпус, вы сразу заметите необходимую деталь, она выглядит в виде небольшого стеклышка, расположенного внутри передвижной каретки. Его основание и нужно извлечь, оно отображено на рис.1. Этот элемент содержит оптическую линзу и два диода.

На этом этапе сразу следует предупредить, что лазерный луч является крайне опасным для человеческого зрения.

При прямом попадании в хрусталик он повреждает нервные окончания и человек может остаться слепым.

Лазерный луч обладает ослепляющим свойством даже на расстоянии 100 м, поэтому важно следить за тем, куда вы его направляете. Помните, что вы несете ответственность за здоровье окружающих, пока такое устройство находится в ваших руках!

Рисунок 3. Микросхема LM-317.

Перед тем как приступить к работе, необходимо знать, что лазерный диод можно повредить не только неосторожным обращением, но и перепадами напряжения. Это может случиться за считанные секунды, поэтому диоды работают на основе постоянного источника электричества. При повышении напряжения светодиод в устройстве превышает свою норму яркости, вследствие чего разрушается резонатор. Таким образом, диод теряет свою способность к нагреву, он становится обычным фонариком.

На кристалл воздействует и температура вокруг него, при ее падении производительность лазера возрастает при неизменном напряжении. Если она превысит стандартную норму, резонатор разрушается по схожему принципу. Реже диод повреждается под воздействием резких перепадов, которые обуславливаются частыми включениями и выключениями устройства в течение короткого периода.

После извлечения кристалла необходимо моментально перевязать его окончания оголенными проводами. Это нужно для создания соединения между его выходами напряжения. К этим выходам нужно припаять малый конденсатор на 0,1 мкФ с отрицательной полярностью и на 100 мкФ с положительной. После этой процедуры можно снять намотанные провода. Это поможет защитить лазерный диод от переходных процессов и статического электричества.

Вернуться к оглавлению

Питание

Перед созданием элемента питания для диода необходимо учесть, что он должен подпитываться от 3V и расходует до 200-400 мА в зависимости от скорости записывающего устройства. Следует избегать подсоединения кристалла к аккумуляторам напрямую, поскольку это не простая лампа. Он может испортиться даже под воздействием обычных батареек. Лазерный диод является автономным элементом, который подпитывается электричеством через регулирующий резистор.

Система питания может быть налажена тремя способами с различной степенью сложности. Каждый из них предполагает подпитку от постоянного источника напряжения (аккумуляторы).

Первый метод предполагает регуляцию электричеством при помощи резистора. Внутреннее сопротивление устройства измеряется путем определения напряжения во время прохода через диод. Для приводов со скоростью записи 16Х вполне достаточно будет 200 мА. При повышении этого показателя существует вероятность испортить кристалл, поэтому стоит придерживаться максимального значения в 300 мА. В качестве источника питания рекомендуется воспользоваться телефонным аккумулятором или пальчиковыми батарейками типа ААА.

Преимуществами этой схемы питания являются простота и надежность. Среди недостатков можно отметить дискомфорт при регулярной подзарядке аккумулятора от телефона и сложность размещения батареек в устройстве. Кроме того, трудно определить нужный момент для подзарядки источника питания.

Рисунок 4. Микросхема LM-2621.

Если вы используете три пальчиковых батарейки, эту схему можно легко обустроить в лазерной указке китайского производства. Готовая конструкция отображена на рис.2, два резистора на 1 Ом в последовательности и два конденсатора.

Для второго метода применяется микросхема LM-317. Этот способ обустройства системы питания намного сложнее предыдущего, он больше подойдет для стационарного типа лазерных установок. Схема основывается на изготовлении специального драйвера, который представляет собой небольшую плату. Она предназначена для ограничения электротока и создания необходимой мощности.

Цепь подключения микросхемы LM-317 отображена на рис.3. Для нее потребуются такие элементы, как переменный резистор на 100 Ом, 2 резистора на 10 Ом, диод серии 1Н4001 и конденсатор на 100 мкФ.

Драйвер на основе данной схемы поддерживает электрическую мощность (7V) вне зависимости от источника питания и окружающей температуры. Несмотря на сложность устройства эта схема считается простейшей для сборки в домашних условиях.

Третий метод является наиболее портативным, что делает его самым предпочтительным из всех. Он обеспечивает питание от двух батареек ААА, поддерживая постоянный уровень напряжения, подаваемого на лазерный диод. Система удерживает мощность даже при низком уровне заряда в аккумуляторах.

При полной разрядке батарейки схема перестанет функционировать, а через диод будет проходить небольшое напряжение, которое будет характеризоваться слабым свечением лазерного луча. Этот тип подачи питания является самым экономичным, его коэффициент полезности действия равняется 90%.

Для реализации такой системы питания понадобится микросхема LM-2621, которая размещена в корпусе размером 3×3 мм. Поэтому вы можете столкнуться с определенными трудностями в период припаивания деталей. Конечная величина платы зависит от ваших умений и сноровки, поскольку детали можно расположить даже на плате 2×2 см. Готовая плата отображена на рис.4.

Дроссель можно взять от обычного блока питания для стационарного компьютера. На него наматывается проволока с сечением 0,5 мм с количеством оборотов до 15 витков, как это показано на рисунке. Дроссельный диаметр изнутри составит 2,5 мм.

Для платы подойдет любой диод Шоттки со значением 3 А. К примеру, 1N5821, SB360, SR360 и MBRS340T3. Мощность, поступающая к диоду, настраивается резистором. В процессе настройки рекомендуется соединить его с переменным резистором на 100 Ом. При проверке работоспособности лучше всего использовать изношенный или ненужный лазерный диод. Показатель мощности тока остается таким же, как и на предыдущей схеме.

Подобрав наиболее подходящий метод, можно модернизировать его, если у вас есть необходимые для этого навыки. Лазерный диод нужно размещать на миниатюрном радиаторе, чтобы он не перегревался при повышении напряжения. По завершении сборки системы питания нужно позаботиться об установке оптического стекла.

Лазерные диоды — ранее изготовление лазеров было связано с большими трудностями, так как для этого необходим маленький кристалл и разработка схемы для его функционирования. Для простого радиолюбителя такая задача была невыполнимой.

С развитием новых технологий возможность получения лазерного луча в бытовых условиях стала реальностью. Электронная промышленность сегодня производит миниатюрные полупроводники, которые могут генерировать луч лазера. Этими полупроводниками стали лазерные диоды.

Повышенная оптическая мощность и отличные функциональные параметры полупроводника позволяют применять его в измерительных устройствах повышенной точности как на производстве, в медицине, так и в быту. Они являются основой для записи и чтения компьютерных дисков, школьных лазерных указок, уровнемеров, измерителей расстояния и многих других полезных для человека устройств.

Возникновение такого нового электронного компонента является революцией в создании электронных устройств разной сложности. Диоды высокой мощности образуют луч, который используется в медицине при выполнении различных хирургических операций, в частности по восстановлению зрения. Луч лазера способен быстро произвести коррекцию хрусталика глаза.

Лазерные диоды используются в измерительных приборах в быту и промышленности. Устройства изготавливают с разной мощностью. Мощности 8 Вт хватит для сборки в бытовых условиях портативного уровнемера. Этот прибор надежен в работе, способен создать лазерный луч очень большой длины. Попадание лазерного луча в глаза очень опасно, так как на малом расстоянии луч способен к повреждениям мягких тканей.

Устройство и принцип работы

В простом диоде на анод подается положительное напряжение, то речь идет о смещении диода в прямом направлении. Дырки из области «р» инжектируются в область «n» р-n перехода, а из области «n» в область «р» полупроводника. При расположении дырки и электрона рядом друг с другом, то они рекомбинируют и выделяют фотонную энергию с некоторой длиной волны и фонона. Этот процесс получил название спонтанного излучения. В светодиодах он является главным источником.

Но при некоторых условиях дырка и электрон способны находиться перед рекомбинацией в одном месте продолжительное время (несколько микросекунд). Если по этой области в это время пройдет фотон с частотой резонанса, то он вызовет вынужденную рекомбинацию, и при этом выделится второй фотон. Его направление, фаза и вектор поляризации будут абсолютно совпадать с первым фотоном.

Кристалл полупроводника изготавливают в виде тонкой пластинки формы прямоугольника. По сути дела, эта пластинка и играет роль оптического волновода, в котором излучение действует в ограниченном объеме. Поверхностный слой кристалла модифицируется с целью образования области «n». Нижний слой служит для создания области «р».

В конечном итоге получается плоский переход р-n значительной площади. Два боковых торца кристалла подвергают полировке для создания параллельных гладких плоскостей, образующих оптический резонатор. Случайный фотон перпендикулярного плоскостям спонтанного излучения пройдет по всему оптическому волноводу. При этом перед выходом наружу фотон несколько раз будет отражаться от торцов и, проходя вдоль резонаторов, создаст вынужденную рекомбинацию, образуя при этом новые фотоны с такими же параметрами, чем вызовет усиление излучения. Когда усиление превзойдет потери, начнется создание лазерного луча.

Существуют различные типы лазерных диодов. Основные из них выполнены на особо тонких слоях. Их структура способна создавать излучение только параллельно. Но если волновод выполнить широким в сравнении с длиной волны, то он будет функционировать уже в различных поперечных режимах. Такие лазерные диоды называют многодомовыми.

Использование таких лазеров оправдано для создания повышенной мощности излучения без качественной сходимости луча. Допускается некоторое его рассеивание. Этот эффект используется для накачки других лазеров, в химическом производстве, лазерных принтерах. Однако при необходимости определенной фокусировки луча, волновод должен выполняться с шириной, сравнимой с длиной волны.

В этом случае ширина луча зависит от границ, которые наложены дифракцией. Такие приборы используются в запоминающих оптических устройствах, оптоволоконной технике, лазерных указателях. Необходимо заметить, что эти лазеры не способны поддержать несколько продольных режимов, и излучать лазерный луч на разных длинах волн в одно время. Запрещенная зона между уровнями энергии «р» и «n» областей диода влияет на длину волны луча.

Лазерный луч на выходе сразу расходится, так как излучающий компонент очень тонкий. Чтобы компенсировать это явление и создать тонкий луч, используют собирающие линзы. Для широких многодомовых лазеров используются цилиндрические линзы. В случае однодомовых лазеров, при применении симметричных линз, лазерный луч будет иметь эллиптическое поперечное сечение, так как вертикально расхождение превосходит размер луча в горизонтальной плоскости. Наглядным примером для этого служит лазерная указка.

В рассмотренном элементарном устройстве нельзя выделить определенную длину волны, кроме волны оптического резонатора. В устройствах, имеющих материал, способный усилить луч в большом интервале частот, и с несколькими режимами, возможно действие на разных волнах.

Обычно лазерные диоды функционируют на одной волне, обладающей, однако значительной нестабильностью, и зависящей от различных факторов.

Разновидности

Устройство рассмотренных выше диодов имеет n-р структуру. Такие диоды имеют низкую эффективность, требуют значительную мощность на входе, и работают только в режиме импульсов. По-другому они работать не могут, так как быстро перегреются, поэтому не получили широкого применения на практике.

Лазеры с двойной гетероструктурой имеют слой вещества с узкой запрещенной зоной. Этот слой находится между слоями материала, у которого широкая запрещенная зона. Обычно для изготовления лазера с двойной гетероструктурой применяют арсенид алюминия-галлия и арсенид галлия. Каждыи из этих соединений с двумя разными полупроводниками получили название гетероструктуры.

Достоинством лазеров с такой особенной структурой является то, что область дырок и электронов, которую называют активной областью, находится в среднем тонком слое. Следовательно, что создавать усиление будут намного больше пар дырок и электронов. В области с малым усилением таких пар останется мало. В дополнение свет станет отражаться от гетеропереходов. Другими словами излучение будет полностью находиться в области наибольшего эффективного усиления.

Диод с квантовыми ямами

При выполнении среднего слоя диода более тонким, он начинает функционировать в качестве квантовой ямы. Поэтому электронная энергия будет квантоваться вертикально. Отличие между уровнями энергии квантовых ям применяется для образования излучения вместо будущего барьера.

Это эффективно для управления волной луча, зависящей от толщины среднего слоя. Такой вид лазера намного эффективнее, в отличие от однослойного, так как плотность дырок и электронов распределена более равномерно.

Гетероструктурные лазерные диоды

Основной особенностью тонкослойных лазеров является то, что они не способны эффективно удерживать луч света. Для решения этой задачи по обеим сторонам кристалла прикладывают два дополнительных слоя, которые обладают более низким преломлением, в отличие от центральных слоев. Подобная структура похожа на световод. Она намного лучше удерживает луч. Это гетероструктуры с отдельным удержанием. По такой технологии произведено большинство лазеров в 90-х годах.

Лазеры с обратной связью в основном применяют для волоконно-оптической связи. Для стабилизации волны на р-n переходе выполняют поперечную насечку для создания дифракционной решетки. Из-за этого в резонатор возвращается и усиливается только одна длина волны. Такие лазеры имеют постоянную длину волны. Она определена шагом насечки решетки. Под действием температуры насечка изменяется. Подобная модель лазера является основой телекоммуникационных оптических систем.

Существуют также лазерные диоды VСSЕL и VЕСSЕL , которые являются поверхностно-излучающими моделями с вертикальным резонатором. Их отличие состоит в том, что у модели VЕСSЕL резонатор внешний, и его конструкция бывает с оптической и токовой накачкой.

Особенности подключения

Лазерные диоды используются во многих устройствах, где необходим направленный световой луч. Основным процессом в сборке устройства с применением лазера своими руками является правильное подключение.

Лазерные диоды отличаются от led диодов миниатюрным кристаллом. Поэтому в нем концентрируется большая мощность, а следовательно и величина тока, что может привести к выходу его из строя. Для облегчения работы лазера существуют особые схемы устройств, которые называются драйверами.

Лазерам необходимо стабильное питание. Однако существуют их модели, имеющие красное свечение луча, и функционирующие в нормальном режиме даже с нестабильной сетью. Если имеется драйвер, то все равно диод нельзя подключать напрямую. Для этого дополнительно нужен датчик тока, роль которого часто играет резистор, подключенный между этими элементами.

Такое подключение имеет недостаток в том, что отрицательный полюс питания не соединен с минусом схемы. Другим недостатком является падение мощности на резисторе. Поэтому перед подключением лазера необходимо тщательно подобрать драйвер.

Виды драйверов

Существуют два главных вида драйверов, способных обеспечить нормальный режим эксплуатации лазерных диодов.

Импульсный драйвер выполнен по аналогии импульсного преобразователя напряжения, способного повышать и понижать этот параметр. Мощности выхода и входа такого драйвера примерно равны. Однако, существует некоторое выделение тепла, на которое расходуется незначительное количество энергии.

Линейный драйвер действует по схеме, которая чаще всего подает напряжение на диод больше, чем требуется. Для его снижения необходим транзистор, преобразующий излишнюю энергию в теплоту. Драйвер имеет малый КПД, поэтому не нашел широкого применения.

При применении линейных микросхем в качестве стабилизаторов, при уменьшении напряжения на входе диодный ток будет снижаться.

Так как питание лазеров выполняется двумя видами драйверов, схемы подключения имеют отличия.

Схема также может содержать источник питания в виде батареи или аккумулятора.

Аккумуляторы должны выдавать напряжение 9 вольт. Также в схеме должен быть резистор, ограничивающий ток, и лазерный модуль. Лазерные диоды можно найти в неисправном приводе дисков от компьютера.

Лазерный диод имеет 3 вывода. Средний вывод подключается к минусу (плюсу) питания. Плюс подключается к правой, либо левой ножке, в зависимости от фирмы изготовителя. Чтобы определить нужную ножку для подключения, необходимо подать питание. Для этого можно взять две батарейки по 1,5 В и сопротивление 5 Ом. Минус источника подключают к средней ножке диода, а плюс сначала к левой, затем к правой ножке. Путем такого эксперимента можно увидеть, какая из этих ножек является «рабочей». Таким же методом диод подключают к микроконтроллеру.

Лазерные диоды могут работать от пальчиковых батареек, аккумулятора сотового телефона. Однако нельзя забывать, что дополнительно требуется ограничивающий резистор номиналом 20 Ом.

Подключение к бытовой сети

Для этого нужно обеспечить вспомогательную защиту от всплесков напряжения высокой частоты.


Стабилизатор и резистор создают блок предотвращающий перепады тока. Для выравнивания напряжения применяют стабилитрон. Емкость предотвращает возникновение скачков напряжения высокой частоты. При правильной сборке обеспечивается стабильная работа лазера.

Порядок подключения

Наиболее удобным для работы будет красный диод мощностью около 200 мВт. Такие лазерные диоды установлены на дисковые приводы компьютеров.

  • Перед подключением с помощью батарейки проверить работу лазерного диода.
  • Выбрать необходимо самый яркий полупроводник. Если диод взят из дискового привода компьютера, то он светит инфракрасным светом. Луч лазера запрещается наводить на глаза, так как это приведет к повреждению глаз.
  • Диод монтировать на радиатор для охлаждения, в виде алюминиевой пластины. Для этого предварительно сверлить отверстие.
  • Между диодом и радиатором промазать термопастой.
  • Резистор на 20 Ом и 5 ватт подключить по схеме с батарейками и лазером.
  • Диод шунтировать керамическим конденсатором любой емкости.
  • Отвернуть от себя диод и проверить его работу, подключив питание. Должен появиться красный луч.

При подключении следует помнить о безопасности. Все соединения должны быть качественными.

В этом посте я опишу, как собирал фиолетовую лазерную указку из хлама, нашедшегося под рукой. Для этого мне потребовался: фиолетовый лазерный диод, коллиматор для сведения пучка света, детали драйвера, корпус для лазера, источник питания, хороший паяльник, прямые руки, и желание творить.

Заинтересовавшихся и желающих поковыряться в электронике - прошу под кат.

Попался мне под руку убитый Blu-ray резак. Выбросить было жалко, а что из него можно сделать - я не знал. Спустя полгода наткнулся на видеоролик, в котором была показана такая самодельная «игрушка». Тут и блюрей пригодился!

В системе чтения-записи привода используется лазерный диод. Выглядит он в большинстве случаев так:

Или вот так.

Для питания «красного» диода необходимы 3-3.05 вольт, и от 10-15 до 1500-2500 миллиампер в зависимости от его мощности.
А вот диод «фиолетовый» требует аж 4.5-4.9 вольт, поэтому питать через резистор от литиевого аккумулятора не получится. Придется сделать драйвер.

Так как у меня был положительный опыт с микросхемой ZXSC400, то я без раздумий ее и выбрал. Эта микросхема представляет собой драйвер для мощных светодиодов. Даташит . С обвязкой в виде транзистора, диода и индуктивности я мудрить не стал - все из даташита.

Печатную плату для драйвера лазера я изготовил известным многим радиолюбителям ЛУТ-ом (Лазерно-утюжная технология). Для этого необходим лазерный принтер. Схема нарисована в программе SprintLayout5 и напечатана на пленке для дальнейшего перевода рисунка на текстолит. Пленку можно использовать практически любую, лишь бы не застряла в принтере и на ней качественно напечаталось. Вполне подходит пленка от пластиковых папок-конвертов.

Если же нет пленки, не нужно расстраиваться! Одалживаем у подруги или жены женский глянцевый журнал, вырезаем оттуда самую неинтересную страницу и подгоняем ее под размер А4. Затем печатаем.

На фото ниже можно увидеть пленку с нанесенным тонером в форме разводки схемы, и подготовленный к переносу тонера кусочек текстолита. Следующим шагом будет подготовка текстолита. Лучше всего брать кусочек, раза в два больше нашей схемы, чтобы было удобнее прижать к поверхности во время следующего шага. Медную поверхность необходимо зашкурить и обезжирить.
Теперь нужно перенести «рисунок». Находим в шкафу утюг, включаем его. Пока он разогревается, кладем кусочек бумаги со схемой на текстолит.

Как только утюг нагреется, нужно аккуратно прогладить пленку через бумагу.

В этом видео весьма наглядно показан процесс.

Когда она «прилипнет» к текстолиту, можно выключать утюг и переходить к следующему шагу.

После переноса тонера с помощью обычного утюга это дело выглядит так:

Если некоторые дорожки не перенеслись, либо перенеслись не очень хорошо, их можно поправить CD-маркером и острой иголкой. Желательно использовать увеличительное стекло, дорожки довольно мелкие, всего 0.4 мм. Плата готова к травлению.

Травить будем хлорным железом. 150 рублей за баночку, хватает надолго.

Разводим раствор, кидаем туда нашу заготовку, «помешиваем» плату и ждем результата.

Не забываем контролировать процесс. Аккуратно вытаскиваем плату пинцетом (его тоже лучше купить, этим мы избавим себя от лишнего мата и «соплей» припоя на будущей плате при пайке).

Ну вот, плата вытравилась!

Аккуратно зачищаем мелкой шкуркой, наносим флюс, залуживаем. Вот, что получается после облуживания.

На контактные площадки припоя можно нанести чуть больше чем везде, чтобы паять детали удобнее было, и без наноса припоя дополнительно.

Собирать драйвер будем по этой схеме. Обратите внимание: R1 - 18 миллиОм , а не мегаОм !

При пайке лучше всего использовать паяльник с тонким жалом, для удобства можно воспользоваться увеличительным стеклом, ведь детали достаточно мелкие. При этой пайке используется флюс ЛТИ-120.

Итак, плата практически спаяна.





Проволочка впаивается на место резистора на 0.028 Ом, так как такой резистор мы вряд ли найдем. Можно впаять параллельно 3-4 SMD-перемычки (выглядят как резисторы, но с надписью 0), на них около 0.1 ом реального сопротивления.

Но таких не оказалось, поэтому я использовал обычную медную проволоку аналогичного сопротивления. Точно не измерял - лишь подсчеты какого-то онлайн-калькулятора.

Тестируем.

Напряжение выставлено всего 4.5 вольт, поэтому светит не очень ярко.

Разумеется, выглядит плата грязновато до смывки флюса. Смывать можно простым спиртом.

Теперь стоит написать и об коллиматоре. Дело в том, что лазерный диод сам по себе светит не тонким лучом. Если включить его без оптики, то светить он будет как обычный светодиод с расходимостью в 50-70 градусов. Для того, что бы создать луч, нужна оптика и сам коллиматор.

Коллиматор заказан из китая . Он содержит в себе еще и слабый красный диод, но он мне не был нужен. Старый диод можно выбить обычным болтом М6.

Раскручиваем коллиматор, выкручиваем линзу и заднюю часть, отпаиваем драйвер от диода. Оставшееся крепление зажимаем в тиски. Выбить диод можно, ударив по нему.
Диод выбит.



Теперь нужно запрессовать новый фиолетовый диод.
Но на ноги диоду нажимать нельзя, а по-другому запрессовывать неудобно.
Что же делать?
Задняя часть коллиматора прекрасно подходит для этого.
Вставляем новый диод ножками в отверстие в задней части цилиндра, и зажимаем в тиски.
Плавно закручиваем тиски, пока диод полностью не запрессуется в коллиматор.



Итак, драйвер и коллиматор собраны.
Теперь закрепляем коллиматор в «голову» нашего лазера, и припаяем диод к выходам драйвера с помощью проводков, либо прямо к плате драйвера.

В качестве корпуса я решил использовать простой фонарик из хозяйственного магазина за сто рублей.
Выглядит он так:

Все железки для лазера и коллиматор.

На прищепку для удобства крепления нацеплен магнитик.
Осталось лишь вставить устройство лазера в корпус и закрутить.



Sprint layout 5, файлы разводки печатной платы в