Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Органическое топливо. Жидкое топливо и его характеристика Назначение и классификация виды топлива

Органическое топливо. Жидкое топливо и его характеристика Назначение и классификация виды топлива

Тема 1. Генерация и утилизация теплоты

Лекция 1

§ 1. Классификация топлива. Показатели качества топлива

Твердое топливо: а) естественное
Некоторые металлургические печи отапливаются
пылеуглём, но чаще уголь используют как сырье
для получения искусственных газов, применяемых
впоследствии для отопления печей.
б) искусственное
Кокс – пористые, механически прочные куски серого
цвета, получаемые при нагревании измельченного
каменного угля без доступа воздуха до температуры
950-1050 оС. Это наиболее дорогое из всех видов
металлургического топлива.
Иногда вместо кокса используют термоантрацит,
получаемый при термической обработке
продуваемого водяным паром антрацита
(высококачественного угля, при горении которого
не образуются углеводороды, и который горит,
поэтому, коротким пламенем и бездымно).

Из всех видов жидкого топлива
в металлургии используют в основном
мазут – остаток фракционной
перегонки нефти после отгонки
бензина, лигроина, керосина
и газойля.
Мазут сгорает почти полностью, так как
имеет малую зольность; он немного
легче воды. Качество мазута
характеризуется температурой
вспышки и застывания. Температура
вспышки, – при которой пары мазута
в смеси с воздухом вспыхивают
при приближении пламени;
эта температура значительно ниже
температуры воспламенения, при
которой жидкий мазут воспламеняется
самопроизвольно, без воздействия
постороннего пламени. Температура
застывания зависит от содержания
парафина в мазуте.

Газообразное топливо – основной вид применяемого
в металлургических печах органического топлива.
Его достоинства: удобство транспортировки, легкость
в управлении процессом горения и возможность
создания газовых смесей, обладающих различной
теплотой сгорания. Недостатки: низкая плотность
и взрывоопасность.
а) естественное
Различают природный газ вулканического
происхождения, почти полностью состоящий
из метана CH4, и попутные газы нефтяных
месторождений, в состав которых входят и другие
углеводороды.

б) искусственное
Побочными продуктами производства являются
коксовый и доменный газы, состоящие,
соответственно, в основном из H2, CH4, CO и из N2,
CO, CO2.
Генераторный газ получают путем газификации,
т.е. превращения твердого или жидкого топлива
в горючий газ при неполном окислении воздухом,
кислородом или водяным паром при высокой
температуре. Генераторный газ содержит CO и H2 –
продукты восстановления CO2 и H2O углеродом
газифицируемого топлива (угля, мазута, кокса).
Установка по газификации
твердого топлива
производства ФГУП «НПЦ
газотубостроения «Салют»»

Химический анализ позволяет определить
элементарный химический состав топлива:
C + H + O + N + SЛ + A + W = 100 % по массе,
органическая
горючая
сухая
рабочая масса
где A – зола, W – влага.
Находящаяся в топливе
сера делится на летучую
(горючую) и минеральную
(негорючую), входящую
в состав золы.
Горючая сера

Теплота сгорания топлива – количество
теплоты, выделяющееся при полном
сжигании 1 кг или 1 м3 топлива, Дж/кг
(Дж/м3).
Высшая теплота сгорания QВР - количество


водяные пары конденсируются в зоне
горения и находятся при 0 оС
(фактическое количество теплоты
меньше).
Низшая теплота сгорания QНР - количество
теплоты, выделяющееся при сгорании
единицы топлива при условии, что
испаряющаяся в процессе горения влага
находится в продуктах сгорания в виде
пара, охлажденного до 20 оС.

Теплота сгорания различных видов топлива колеблется
в широких пределах. Для мазута, например, она
составляет свыше 40 МДж/кг, а для доменного газа –
около 4 МДж/м3.
Для сравнительной оценки различных видов топлива
вводят понятие условного топлива, для которого
низшая теплота сгорания
QНР = 29,3 МДж/кг.

§ 2. Кинетический и диффузионный режимы горения топлива

Горение заранее подготовленной смеси топлива
с воздухом или кислородом называют кинетическим;
а горение, протекающее одновременно
со смесеобразованием – диффузионным.
Гомогенное и гетерогенное горение –
соответственно, горение газа
и горение твердого или жидкого
топлива. Гетерогенное горение
включает в себя элементы
гомогенного. Например,
при нагреве частицы угля перед
ее воспламенением из нее
Зажигательная поверхность
выделяются летучие вещества,
спичечного коробка покрыта
которые, смешиваясь с кислородом, смесью красного фосфора
и порошка стекла. В состав
сгорают в режиме гомогенного
спичечной головки входят
окислители (PbO2, КСlО3,
горения; таким образом, процесс
ВаСrO4) и восстановители
горения протекает только
(S, Sb2S3).
на границе раздела фаз.

Рассмотрим гомогенное горение как более общее.
Коэффициент расхода воздуха
VВД
n Т –

отношение действительного расхода воздуха,
затрачиваемого для сжигания единицы топлива,
к стехиометрическому (теоретически необходимому).
Например, из реакции горения метана
CH4 + 2 O2 = CO2 + 2 H2O
видно, что для полного сгорания 1 м3 метана
необходимо подавать 2 м3 кислорода. Если кислорода
подают на 5 % больше, то n = 1,05.
Коэффициент расхода воздуха является важнейшим
параметром, путем изменения которого регулируют
процесс горения: температуру горения, количество
и химический состав продуктов сгорания,
устойчивость процесса горения.

Пламя представляет
собой светящуюся газовую
оболочку, в которой
происходит
экзотермическая реакция
газообразных продуктов
разложения материала
с окислителем.
Сгорание топлива в пламенных печах
производится в факеле.
Факел – это состоящая
из компонентов с различными
физическими свойствами
(топливо, воздух и продукты
сгорания) струя, в пределах
которой осуществляется горение.
Фронт пламени – зона интенсивной
реакции и резкого возрастания
температуры. Фронт пламени
делит факел на две зоны:
внутреннюю и внешнюю.
Во внутреннюю зону подается
топливо и окислитель,
либо только топливо; туда же
диффундирует из пламени часть
высокотемпературных продуктов
сгорания. Во внешней зоне
находятся продукты сгорания,
либо продукты сгорания
и окислитель (при n > 1).

Рассмотрим кинетический ламинарный факел, который
образуется при горении струи топлива и окислителя,
истекающей из трубы в неограниченный объем
воздуха. Если сбоку к срезу трубы поднести
запальник, то произойдет зажигание горючей смеси.
Образуется тонкий фронт пламени в виде конической
поверхности:
wi
wn
un
R
i

w
w0
горючая смесь

Пламя с нормальной скоростью распространения
пламени un, зависящей от физико-химических свойств
горючей смеси, распространяется навстречу
движению струи и к ее оси.
На некотором расстоянии от среза трубы по периметру
вытекающей струи образуется зажигающее кольцо –
устойчивое кольцо пламени с диаметром, меньшим
диаметра выходного отверстия трубы, служащее
естественным запальником для свежей смеси.
У стенок трубы (ниже зажигающего кольца) смесь
охлаждается из-за теплоотвода через стенки трубы
и примешивания холодного воздуха из окружающей
среды – это приводит к снижению нормальной
скорости распространения пламени, и пламя сюда
не проникает. В процессе распространения
от зажигающего кольца к центру струи пламя
одновременно относится движущейся смесью
и достигает оси трубы на некотором расстоянии
от среза трубы, называемом длиной факела lФ.

Условием устойчивости фронта пламени является
un = wn = wi cos i,
где wn – проекция вектора скорости смеси в i–той точке
wi на нормаль к элементу фронта пламени в этой
точке, м/с;
i – угол между вектором скорости нормального
распространения пламени и вектором скорости смеси
в i–той точке.
Начиная с определенного значения средней скорости
горючей смеси на выходе из горелки w0, произойдет
отрыв пламени. Это произойдет в тот момент, когда
нарушится условие равновесия применительно
к зажигающему кольцу. При увеличении w0 возрастает
количество смеси, проходящее через единицу
поверхности зажигающего кольца, следовательно,
уменьшается температура кольца и скорость
нормального распространения пламени в нем. Это
на фоне увеличения w0 приводит к отрыву пламени.

Верхний по скорости предел устойчивости пламени –
предельно большая скорость потока, при которой
горение устойчиво.
Нельзя допускать и проскока пламени – его
проникновения в трубу при слишком значительном
уменьшении скорости смеси. Нижний по скорости
предел устойчивости пламени – предельно малая
скорость истечения горючей смеси, при которой
еще не наступает проскок.

Определим, от чего зависит длина факела при устойчивом
горении, для этого примем, что радиус зажигающего
кольца примерно равен радиусу выходного отверстия
трубы. Тогда время, в течение которого пламя
распространится от границы струи до ее оси,
R
t .
un
За это же время пламя сместится вдоль оси факела
на расстояние, равное длине факела:
w0 R
,
lф w t w0 t
un
где w – средняя по сечению скорость движения газов
в пределах факела м/с.
Таким образом, длина факела зависит от радиуса
среза трубы, средней скорости истечения, а также
от температуры и состава смеси (от этих факторов
зависит величина un).

Рассмотрим диффузионный ламинарный факел.
Пусть из трубы подается ламинарная струя топлива,
которое в пограничном слое при помощи
молекулярной диффузии и конвекции
перемешивается с воздухом, образуя горючую смесь.
Если к периферии струи поднести запальник,
то по ее периметру возникнет зажигающее кольцо
и сформируется фронт пламени конической формы:
4
3
2
1
газ
1 – потенциальное
ядро потока,
2 – топливновоздушная смесь,
3 – фронт пламени,
4 – смесь
продуктов сгорания
и воздуха
Все горючие твердые вещества
подразделяются на два класса:
безгазовые и газофицирующиеся
при горении.
К веществам и материалам
первого класса, не образующим
при горении газообразных
продуктов, могут быть отнесены
различные термитные смеси,
продуктами сгорания которых
являются нелетучие
конденсированные вещества оксиды металлов.
Подавляющее большинство
твердых веществ и материалов
относятся ко второму классу.

Предположим, что фронт образовался в точках
пространства, куда горючее поступает в избытке
(n < 1). В этом случае часть горючего пройдет сквозь
фронт в окружающую среду, смешается там
с кислородом и сгорит, при этом приход кислорода
во фронт еще больше сократится. Очевидно, в таких
условиях фронт пламени не может быть устойчивым.
Подобным образом можно доказать, что фронт
пламени не может быть устойчивым в точках, куда
кислород поступает в избытке (n > 1).
Так как зажигающий пояс находится на границе струи
с окружающей средой, то есть в зоне с очень низкими
скоростями, то его устойчивость высока. Проскок же
вообще невозможен, поскольку через трубу подается
чистый газ.

Время, в течение которого завершится
формирование факела, равно времени диффузии
воздуха от периферии к оси струи:
R2
,
t
2 D
где R – радиус трубы, м;
D – коэффициент диффузии, м2/c.
Длина факела
R 2 w0 .
lф w t w0 t
2 D
Учтем, что секундный расход газа через трубу
V = w0 R2 w0
Окончательно имеем
V

.
D
V
.
2
π R

Расчет горения топлива включает в себя следующие
этапы.
1. Определение расхода воздуха на горение.
Производится по содержанию избыточного кислорода
в продуктах сгорания, %:
21
,
21 O2 ИЗБ
где 21 - % кислорода в земной атмосфере.
n
SPC-93-1195 - Сигнализатор
газа O2, газоанализатор
стационарный

2. Определение количества и состава продуктов сгорания.
Производится на основании уравнений горения.
Рассмотрим пример горения метана при подаче
теоретического количества воздуха:
При сгорании 1 м3 метана образуется 1 м3 CO2 и 2 м3 H2O.
Кроме того, с воздухом вносится
2 3,762 = 7,524 м3 азота.
Таким образом, полное количество продуктов сгорания:
1 + 2 + 7,524 = 10,524 м3.

Состав продуктов сгорания в объемных процентах:
1
100 9,5 ;
10,524
2
100 19 ;
H 2O . . .
10,524
CO2 . . .
N2 . . .
7,524
100 71,5 .
10,524
Если бы сжигание метана производилось с n > 1,
то общее количество продуктов сгорания возросло бы
из-за увеличения количества N2 и наличия
избыточного О2 в продуктах сгорания.
Правильность расчета подтверждается составлением
материального баланса в единицах массы, так как
объемы реагирующих веществ могут быть не равны
объемам полученных при горении соединений.

3. Расчет температуры горения.
Калориметрической называется температура, которая
могла бы быть достигнута при условии, что вся теплота,
выделившаяся при горении, использована только
на нагрев продуктов сгорания:
QНР

,
vД c
где vД – объем дыма, образующегося при сгорании единицы
топлива, м3/м3 (кг/м3);
с – удельная теплоемкость продуктов сгорания, Дж/(м3 оC).
Горение свечи является примером процессов
горения плавящихся материалов, которым
пламя дает теплоту, достаточную
для их плавления, испарения и разложения.
Парафиновая свеча имеет минимальную
температуру 1400°С.

Из-за частичной диссоциации CO2 и H2O, сопровождаемой
поглощением теплоты, теоретическая температура
всегда ниже калориметрической:

QНР QДИСС
vД c
,
где QДИСС – определяемое расчетным путем количество
теплоты, израсходованное на протекание процесса
диссоциации.
Из-за нагрева стен печи и заготовок действительная
температура еще меньше:

QНР QДИСС QПОТ
,
vД c
где QПОТ – количество теплоты, отдаваемое продуктами
сгорания.

Величина QПОТ зависит от условий теплообмена
продуктов сгорания с окружающей средой
и оценивается с помощью выражения
tД = tК ПИР,
где ПИР = 0,65 0,8 – зависящий от конструкции печи,
ее теплового режима и определяемый
экспериментальным путем пирометрический
коэффициент.
Величина действительной температуры дает оценочную
характеристику условий теплообмена при сжигании
топлива в рабочем пространстве печи.

§ 3. Конструкции и схема выбора устройств для сжигания топлива

Для сжигания газообразного топлива применяются
устройства, называемые горелками. По принципу
смешения газа с воздухом их делят на две группы:
с предварительным и с внешним смешением.
Внутри каждой группы классификация производится
по конструктивным признакам, которые обусловлены
способом образования смеси.
Наиболее распространенные горелки
с предварительным смешением – инжекционные,
использующие инжектор – устройство, в котором
вытекающая из сопла струя газа увлекает за собой
окружающий воздух, и перемешивание газа и воздуха
достаточно полно происходит в смесительной трубе
до попадания в печь.

Рассмотрим истечение турбулентной струи газа
в открытую с обоих торцов цилиндрическую камеру:
В
Г
В
До соприкосновения со стенами камеры струя ведет
себя как свободная, увлекая окружающий воздух
через входной торец камеры. В связи с ограниченным
проникновением окружающей среды кинетическая
энергия струи не может быть полностью
израсходована, и потому она частично превращается
в потенциальную энергию давления, – струя топлива
совершает работу противодавления, нагнетая
подготовленную смесь в рабочее пространство печи.
В работе инжекционных горелок существенную роль
играет туннель, стенки которого в процессе горения
раскаляются, что обеспечивает поджигание новых
порций газо-воздушной смеси и способствует
устойчивому горению.

Инжекционная газовая
горелка вихревая (ГГВ)
низкого и среднего
давления ООО «ПКФ
«СпецКомплектПрибор»»
Достоинства горелок с предварительным смешением:
1) малая величина коэффициента расхода воздуха,
что обеспечивает наивысшую температуру горения
для данного топлива по сравнению с другими
горелками; 2) автоматическое поддержание
постоянного соотношения расходов газа и воздуха;
3) отсутствие воздухопроводов.

Широко распространенной горелкой
без предварительного смешения является
двухпроводная. По наружной трубе подается воздух,
образующий облекающий поток по отношению к газу,
который подается по внутренней трубе:
В
Г
В турбулентных двухпроводных горелках воздушная струя
закручивается по отношению к газовой, что способствует
улучшению перемешивания топлива и окислителя.
Плоскопламенные горелки создают разомкнутый факел
с углом раскрытия 180о, растекающийся тонким слоем
и прилегающий к поверхности кладки печи, в которую
вмонтирована горелка. При этом не только придается
вращательное движение воздушному потоку,
но и применяются специальной формы горелочные
камни и рассекатели.

Плоскопламенная
горелка (FFB),
Hotwork
Combustion
Technology
Limited,
Великобритания
Горелки дутьевые типа
"труба в трубе"
Уфалейского завода
металлоизделий
(г. Верхний Уфалей
Челябинской области)
"Горящее гало". Мощная промышленная горелка,
работающая в относительно слабом режиме.
Chuck Baukal/John Zink Company
Достоинства горелок без предварительного
смешения: 1) возможность создания факела
специальной формы; 2) возможность подогрева
воздуха; 3) компактность.

Турбулентные горелки выбирают следующим образом:
Р
1. Зная теплоту сгорания QН и часовой расход топлива B
на горелку, определяют ее теплопроизводительность
Q B QНР.
2. По величине Q, задаваясь скоростью выхода топлива
из горелки (20 30 м/с), с помощью специальной
номограммы определяют диаметр горелки D.
3. Определив D, по перечисленным выше данным находят
все необходимые размеры горелки.
4. Действительное давление газа и воздуха определяют
по формулам:
pГ = Г pГ, pВ = В pВ,
где pГ и pВ – расчетное динамическое давление газа
и воздуха;
Г = 0,7 0,8 и В = 2,5 3 - коэффициенты потерь.

В случае если не допустим контакт нагреваемого
металла с продуктами сгорания, сжигание газа
производят в радиантных трубах, выполненных
из жаростойких сталей, а рабочее пространство печи
заполняют защитным газом.
Радиационная труба
производственноинжиниринговой
компании «ПЕРОЛ»
Радиантная труба
ООО «Воткинский
завод ТО» (Удмуртия)

Жидкое топливо сжигают с помощью форсунок,
обеспечивающих дробление мазута на мелкие капли
перед его сжиганием, для чего используется энергия
самого распыляемого топлива, либо вентиляторного
воздуха, либо газообразного распылителя высокого
давления: компрессорного воздуха, водяного пара.
Твердое топливо сжигают в пылеугольных горелках.
Жидкотопливная горелка
R20-30 немецкого
производителя Giersch
Пылеугольная горелка
ООО НТФ "ЭНЕРГОМАШинжиниринг" (г. Таганрог)

§ 4. Тепловые эквиваленты сырьевых материалов шихты

Шихтовые материалы могут выполнять функцию
технологического топлива в случае,
когда количество выделившейся в результате
экзотермических реакций теплоты сопоставимо
с энергетическими затратами на осуществление
технологического процесса. Процессы, протекающие
за счет химической энергии сырьевых материалов,
называют автогенными.
Примером технологического топлива могут служить
сульфидные материалы, применяемые при выплавке
меди. Их энергообразующими компонентами
являются Fe и S, входящие вместе с Cu в сложные
химические соединения.
Пирит FeS2
Халькопирит
CuFeS2

Состав шихты, как правило, задают содержанием
S и Cu, тогда теплота сгорания шихты
QХШ = 119,4 S – 12,4 Cu ,
где S и Cu – содержание серы и меди в шихте,
выраженное в % от массы.
Эта формула получена перемножением величины
тепловых эффектов реакций
на соответствующие им количества
энергообразующих компонентов и сложением
полученных результатов. Знак «–» перед
вторым слагаемым обусловлен тем,
что восстановление сульфида меди оксидом
меди является эндотермической реакцией.

Для сравнения потенциальных энергетических
возможностей сырьевых материалов и топлива
и оценки их взаимозаменяемости в условиях
конкретного технологического процесса используют
понятие топливного эквивалента шихты,
который показывает, какое количество условного
топлива заменяет тонна шихты.
Тепловым эквивалентом шихты называют
количество теплоты, используемое на протекание
технологического процесса, из общего количества
теплоты, выделившейся при окислении единицы
массы шихты, кДж/кг. Перегрев содержащихся
в печи материалов ведет к нарушению
технологического режима и поэтому из общего
количества теплоты, полученного за счет химической
энергии сульфидов, в печи может быть использована
только ее часть.

Используют понятия теплогенерационной
и теплообменной составляющей теплового эквивалента
шихты, которые соответственно показывают, какое
количество теплоты, используемой в печи, подводится
к продуктам плавки в процессе теплогенерации
и за счет теплообмена.
Известно, что продукты окисления сульфидов получают
теплоту непосредственно при протекании
экзотермических реакций, и потому считается,
что скорость подвода теплоты к веществам, участвующим
в реакциях окисления, определяется скоростью
теплогенерационных процессов. К остальным материалам
теплота подводится от продуктов окисления сульфидов
за счет теплообмена: таким образом, скорость подвода
теплоты к флюсам и породообразующим компонентам
определяется интенсивностью протекающих в печи
теплообменных процессов.

§ 5. Генерация теплоты за счет электрической энергии

При наложении электромагнитного поля в проводящей
среде электроны проводимости обусловливают ток
проводимости:
J N e e v Д,
где – вектор плотности тока проводимости, А/м3;
Ne – плотность электронов проводимости, м-3;
e = 1,602 10-19 Кл – заряд электрона;
vД 10-3 10-5 м/c – скорость «дрейфа» электронов.
При неупругом взаимодействии электроны передают
избыток кинетической энергии ионам, увеличивая
амплитуду их колебаний, что и определяет
повышение температуры, то есть нагрев вещества.

Если прохождение тока проводимости не связано
с изменением структуры вещества и не сопровождается
химическими реакциями, то, В соответствии с законом
Джоуля-Ленца, внешняя работа электрических сил
целиком идет на изменение тепловой энергии
в единице объема нагреваемого вещества:
N e v Д F qV ,
где F – сила, действующая на электрон, Н;
qv – удельная скорость преобразования энергии, Вт/м3.
Последнее выражение выражает закон теплового
действия тока проводимости и является частным
случаем закона сохранения энергии.
Теплотехнические возможности теплогенерации по закону
Джоуля-Ленца зависят от: 1) способа подвода
электромагнитной энергии; 2) степени равномерности
qv в объеме нагреваемого тела.

Джеймс Прескотт ДЖОУЛЬ (1818–
1889) – английский физик. Изучал
природу тепла и обнаружил ее связь
с механической работой. Это привело
к теории сохранения энергии, что,
в свою очередь, привело к разработке
первого закона термодинамики.
Он работал с лордом Кельвином
над абсолютной шкалой
температуры, делал наблюдения
над магнитострикцией (изменение
объема и линейных размеров тела
при изменении состояния его
намагниченности), открыл связь
между током, текущим через
проводник с определенным
сопротивлением и выделяющейся
при этом теплотой, названный
законом Джоуля (1841).
Эмилий Христианович ЛЕНЦ (1804–1865) –
знаменитый русский физик. Работал
в области электромагнетизма.
Важнейшие результаты его исследований
излагаются и во всех учебниках физики. В их
числе закон индукции (правило Ленца), по
которому направление индукционного тока
всегда таково, что он препятствует тому
действию (например, движению), которым
он вызывается (1834) и закон Джоуля и
Ленца: количество теплоты, выделяемое
током в проводнике, пропорционально
квадрату силы тока и сопротивлению
проводника (1842).

Возможно 2 способа прямого подвода энергии:
1) кондукционный, когда вектор напряженности
электрического поля E , В/м, направлен вдоль оси
нагреваемого электропроводного тела (т.е. ток
проводимости направлен вдоль оси нагреваемого
тела);
2) индукционный, когда вектор E направлен по нормали
к оси и переменное электромагнитное поле
индуцирует вихревые токи проводимости.
Когда невозможно обеспечить удовлетворительный
нагрев, диссипацию энергии обеспечивают косвенной
теплогенерацией, для чего используют электрические
нагреватели.

Существуют 3 группы электронагревателей:
1. Металлические из хромоникелевых (нихром) и
железохромоалюминиевых (фехраль) сплавов, имеющие
предельную рабочую температуру 800–1200 оС.
В современных электропечах сопротивления используют:
- проволочные
спиральные,
- ленточные
зигзагообразные
и проволочные зигзагообразные нагреватели.

2. Керамические (карборундовые) из SiC применяют
в тех случаях, когда необходимо иметь температуру
нагревателя 1250–1450 оС. Их изготавливают в виде
трубок.
3. Металлокерамические нагреватели из дисилицида
молибдена MoSi2 имеют предельную рабочую
температуру 1450–1680 оС. Наиболее употребительная
форма таких нагревателей – U-образная.
Карборундовые
нагреватели.
Размер: 26х400мм
и 38х400мм,
L=1200мм
Нагреватели
из дисилицида
молибдена

Алгоритм расчета нагревателей:
1. Находят рабочую температуру
tН tМКОН + 100 оС.
2. Выбирают материал и определяют величину
его удельного электросопротивления, Ом м.
3. По формуле для плотности результирующего
теплового потока в системе 2 параллельных
поверхностей находят удельную поверхностную
мощность идеального нагревателя, т.е. такого,
который не излучает сам на себя:
ω ИД
σ 0 TН4 TМ4
1
1
1
εН εМ
, Вт/м2.

5. Выбирают тип электрического соединения
нагревателей и находят величину фазового
напряжения. При схеме соединения «треугольник»
фазовое напряжение равно сетевому UФ = UС.
При схеме соединения «звезда»

.

3
6. По величинам мощности печи N, UФ, и
рассчитывают размеры нагревателей и выбирают
их количество.
Генерация теплоты по закону Джоуля-Ленца имеет
место в индукционных печах и печах сопротивления
прямого и косвенного действия.

Генерация теплоты за счет ускорения потока электронов
основана на явлении термоэлектронной эмиссии –
испускании электронов нагретыми телами, например,
металлопленочными катодами из тугоплавких металлов
с пленкой из щелочных, щелочноземельных
и редкоземельных металлов (элементы I-III групп
периодической системы), помещенными
в электрическое поле. Поступающие в межэлектродный
промежуток электроны формируются в электрополе
в виде направленного потока быстролетящих
(со скоростью 100 тыс. км/с) электронов,
называемого электронным лучом.
Во избежание рассеяния приобретенной кинетической
энергии электроны не должны сталкиваться
с молекулами газовой среды, для чего обеспечивают
распространение потока электронов в вакууме.

Мощность электронного луча
P I А U А k U А5 / 2 ,
где I А k U А3 / 2 – сила тока переноса в вакууме,
связанная с величиной ускоряющего напряжения UА
так называемым «законом трех вторых» в отличие
от закона Ома;
k – постоянная, характеризующая размеры и форму
катода и анода.
Из-за соударения электронного луча со связанными
электронами нагреваемого вещества возможно
возникновение рентгеновского излучения, по этой
причине ограничивают величину UА (не более 35 кВ).
Возможность управления движением электронов
позволяет фокусировать и перемещать электронный луч
по поверхности нагрева, создавая заданную плотность
теплового потока.
Способ применяют в электронно-лучевых печах.

Теплогенерация за счет электрических разрядов в газах
заключается в осуществлении разряда путем разрушения
нейтральных молекул под действием электромагнитного
поля. При этом образуется плазма – частично или
полностью ионизованный газ. В металлургии используют
так называемую низкотемпературную плазму с
температурой 5 20 тыс. К (высокотемпературная плазма
с температурой свыше 100 тыс. К является объектом
исследований по управляемому термоядерному синтезу).
Суммарные энергозатраты на создание электрического
разряда в газах
WΣ = WЭ + WД + WИ,
где WЭ – энергия, идущая на увеличение энтальпии газа;
WД – энергия, идущая на диссоциацию многоатомных
молекул;
WИ – энергия, идущая на ионизациюю, т. е. отрыв
электронов.

Удельная энтальпия плазмы ступенчато возрастает при
увеличении температуры. При относительно низкой
температуре идет процесс диссоциации многоатомных
газов (например, черырехокись азота распадается
на 2 радикала двуокиси, имеющие на внешнем уровне по
одному неспаренному электрону: N2O4 2 NO2), а затем,
при дальнейшем возрастании температуры, происходит
ступенчатая ионизация с образованием одно-, двухи более зарядных ионов. Образование многозарядных
ионов происходит лишь при температуре > 30 тыс. К.
Чаще всего применяют дуговой (в плавильных печах) и
коронный разряд (в так называемых электронно-ионных
технологических процессах и для ионизации аэрозолей
при очистке дыма). В промышленности применяют также
искровой (для электроэрозионной обработки металлов)
и тлеющий разряд (для распыления металлов при
производстве полупроводников и сверхпроводников).

Ионизатор воздуха
"Аэроион-25"
(модификация
"Ромашка"),
использующий
коронный
электрический
разряд
Дуговой электрический
разряд в ксеноновой лампе
Молния – искровой
электрический разряд в атмосфере
Огни святого Эльма тлеющий электрический разряд

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.

ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.

В настоящее время водород в основном получают из природного газа, в ближайшем будущем его можно будет получать в процессе газификации угля. Для получения химической энергии водорода используется также процесс электролиза. Последний способ имеет значительное преимущество, так как приводит к обогащению кислородом окружающей среды. Широкое применение водородного топлива может решить три актуальные проблемы:

Уменьшить потребление органического и ядерного топлива;

Удовлетворить возрастающие потребности в энергии;

Снизить загрязнение окружающей среды.

ЯДЕРНОЕ ТОПЛИВО. КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ

Ядерное топливо. Единственный природный вид ядерного топлива – тяжёлые ядра урана и тория. Энергия в виде теплоты высвобождается под действием медленных нейтронов при делении изотопа 235 U, который составляет в природном уране 1/140 часть. В качестве сырья могут использоваться 238 U и 239 Th, которые при облучении нейтронами превращаются в новое ядерное топливо – соответственно 239 Pu и 239 U. При делении всех ядер, содержащихся в 1 кг урана, выделяется энергия 2·10 7 кВт·ч, что эквивалентно 2,5 тыс.т высококачественного каменного угля с теплотой сгорания 35 МДж/кг (8373 ккал/кг).

Ядерное топливо делится на два вида:

    Природное урановое, содержащее делящиеся ядра 235 U, а также сырьё 238 U, способное при захвате нейтрона образовывать плутоний 239 Pu;

    Вторичное топливо, которое не встречается в природе, в том числе 239 Pu, получаемый из топлива первого вида, а также изотопы 233 U, образующиеся при захвате нейтронов ядрами тория 232 Th.

По химическому составу, ядерное топливо может быть:

    Металлическим, включая сплавы;

    Оксидным (например, UO 2);

    Карбидным (например, PuC 1-x)

    Нитридным

    Смешанным (PuO 2 + UO 2)

Применение. Ядерное топливо используется в ядерных реакторах, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах) в виде таблеток размером в несколько сантиметров.

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200-500°С уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в полтора раза.

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов - осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа - с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает выгорание, которое является одной из главных оценок экономики атомной энергетики.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика - двуокись урана UO 2 . Её температура плавления равна 2800 °C, плотность - 10,2 т/м 3 . У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики - низкая теплопроводность - 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·10 3 кВт/м 2 , при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется ещё токсичностью плутония. Для приготовления ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO 2 , UC, PuO 2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

УСЛОВНОЕ ТОПЛИВО

Условное топливо. Различные виды энергетических ресурсов обладают разным качеством, которое характеризуется энергоёмкостью топлива. Удельной энергоёмкостью называется количество энергии, приходящееся на единицу массы физического тела энергоресурса.

Для сопоставления различных видов топлива, суммарного учёта его запасов, оценки эффективности использования энергетических ресурсов, сравнения показателей теплоиспользующих устройств, принята единица измерения – условное топливо. Условное топливо – это такое топливо, при сгорании 1 кг которого выделяется 29309 кДж, или 700 ккал энергии. Для сравнительного анализа используется 1 тонна условного топлива.

1 ту.т = 29309 кДж = 7000 ккал = 8120 кВт·ч.

Этот показатель соответствует хорошему малозольному углю, который иногда называют угольным эквивалентом.

За рубежом для анализа используется условное топливо с теплотой сгорания 41900 кДж/кг (10000 ккал/кг). Этот показатель называется нефтяным эквивалентом. В нижеследующей таблице приведены значения удельной энергоёмкости для ряда энергетических ресурсов в сравнении с условным топливом.

ЗАКЛЮЧЕНИЕ

Таким образом, на основе вышеизложенного материала можно сделать следующие выводы:

    Топливо – это горючее вещество, применяемое для получения теплоты.

    По происхождению топливо бывает природное и искусственное.

    По агрегатному состоянию выделяют твёрдое, жидкое и газообразное топливо.

    По назначению при использовании топливо может быть энергетическим, технологическим и бытовым.

    Как самостоятельный вид выделяют ещё ядерное топливо.

    Для сравнения различных видов топлива по их теплотворной способности используют единицу измерения «условное топливо».

    Условное топливо – условно принятое топливо с теплотворной способностью 7000 ккал/кг (для жидких и твёрдых видов топлива) и 7000 ккал/нм 3 (для газообразных видов топлива).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

    Охрана труда и основы энергосбережения: Учеб. пособие /

Э.М. Краченя, Р.Н. Козел, И.П.Свирид. – 2-е изд. – Мн.: ТетраСистемс, 2005. – 156-161,166-167 с.

    Википедия – свободная энциклопедия [Электронный ресурс] / Ядерное топливо. Режим доступа: http://ru.wikipedia.org/ Дата доступа: 04.10.2009.

3. Департамент по энергоэффективности Государственного комитета по стандартизации Республики Беларусь [Электронный ресурс] / Нормативные документы. Методические рекомендации по составлению технико-экономических обоснований для энергосберегающих мероприятий. Режим доступа: http://energoeffekt.gov.by/doc/metodika_1.asp. Дата доступа: 03.10.2009

ПРИЛОЖЕНИЕ А

Таблица 1: Удельная энергоёмкость энергетических ресурсов

Виды топлива

Удельная энергоёмкость,

Удельная энергоёмкость,

Условное топливо

Топливо - солнечной энергией).Могут быть и другие классификации . Например, ресурсы истощенные - виды природных...

  • Понятие, виды и классификация издержек обращения на примере райпотребсоюза

    Реферат >> Финансы

    Которая состоит из 3 разделов. Понятие, виды и классификация издержек обращения Издержки обращения – это... 100% I. Материальные затраты - 34,53% топливо - 0,6% энергия - 2,4% хранение, подработка, подсортировка, упаковка...

  • Классификация строительных материалов (2)

    Шпаргалка >> Строительство

    Надежны в эксплуатации, позволяют использовать местные виды топлива и требуют меньшего его расхода, После... и древесные; полимеры полимеризационные и поликонденсационные. В единой классификации строительных конгломератов органические вяжущие вещества...

  • Классификация бухгалтерских балансов организации и порядок их составления и применения в хозяйст

    Реферат >> Бухгалтерский учет и аудит

    Бухгалтерского баланса организации 1.2 Классификация бухгалтерских балансов 2.Организационно- ... так же изучить виды и классификацию бухгалтерских балансов. Предметом... основные и вспомогательные материалы, топливо , покупные полуфабрикаты и комплектующие...

  • Агрегатное

    состояние

    Происхождение топлива

    Естественное

    Искусственное

    Бензин, керосин, дизельное топливо, мазут, спирт, бензол, смолы (каменноугольная, торфяная, сланцевая)

    Газообраз-

    Природный и

    нефтепромысловый

    Генераторный, водяной, светильный, коксовый, полукоксовый, доменный, нефтеперерабатывающих заводов газы

    Ископаемые угли,

    горючие сланцы, торф,

    Каменноугольные кокс и полукокс, брикетированное и пылевидное топливо, древесный уголь

    Топливо состоит из горючей и негорючей частей. Горючая часть топлива представляет собой совокупность различных органических соединений, в которые входят углерод, водород, кислород, азот, сера. Негорючая часть (балласт) состоит из минеральных примесей включающих золу и влагу.

    Углерод С - основная горючая часть топлива. С увеличением его содержания тепловая ценность топлива повышается. Для различных топлив содержание углерода составляет от 50 до 97 %.

    Водород Н является второй по значимости горючей составляющей топлива. Содержание водорода в топливе достигает 25%. Однако, при сгорании водорода выделяется в четыре раза больше теплоты, чем при сгорании углерода.

    Кислород О, входящий в состав топлива, не горит и не выделяет теплоты, поэтому является внутренним балластом топлива. Его содержание в зависимости от вида топлива колеблется от 0,5 до 43 %.

    Азот N не горит и является внутренним балластом топлива. Содержание его в жидком и твердом видах топлива не велико и составляет 0,5 - 1,5%.

    Сера S, при сгорании которой выделяется определенное количество теплоты, является весьма нежелательной составной частью топлива, так как продукты его сгорания - сернистый SO 2 и серный SО 3 ангидриды вызывают сильную газовую или жидкостную коррозию металлических поверхностей. Содержание серы твердом топливе до 8 %, а в нефти от 0,1 до 4 %.

    Зола А представляет собой негорючий твердый компонент, количество которого определяют после полного сгорания топлива. Она является нежелательной и даже вредной примесью, так как в ее присутствии усиливаются абразивные износы, усложняется эксплуатация различных агрегатов. Топливо с высоким содержанием золы имеет низкую теплоту сгорания и воспламенения.

    Влага W является весьма нежелательной примесью топлива, так как, отбирая часть теплоты на испарение, снижает теплоту и температуру сгорания топлива, усложняет эксплуатацию установок (особенно в зимнее время), способствует коррозии.

    Минеральные примеси (золу и влагу) принято подразделять на внешние и внутренние. Первые попадают в топливо из окружающей среды при его добыче, транспортировке или хранений, а вторые входят в его химический состав.

    Топливо, которое поступает к потребителю в естественном состоянии, и содержит, кроме горючей части, золу и влагу, называется рабочим. Для определения сухой массы топлива его высушивают при температуре 105°С для удаления влаги.

    Состав газообразных топлив весьма разнообразен: горючая часть его включает водород Н, окись углерода СО, метан СН 4 и другие газообразные углеводороды (CnHm) с числом углеводородных атомов до 4 включительно.

    Топливо – это горючие вещества, выделяющие при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в другие виды энергии. К ним относятся полезные ископаемые органического происхождения – уголь, горючие газы, горючие сланцы, нефть, торф, а также древесина и растительные отходы.

    В ядерной энергетике применяется понятиеядерного топлива - вещества, ядра которого делятся под действием нейтронов, выделяя при этом энергию в основном в виде кинетической энергии осколков деления ядер и нейтронов.

    Обычное химическое топливо , в отличие от ядерного, называют органическим, и оно является в настоящее время основным источником теплоты .

    Для анализа тепловых характеристик топлив, определения состава газов и других расчетов необходимо знать химическую структуру каждого вида топлива. Органическая часть твердых и жидких топлив состоит из большого количества сложных химических соединений, в состав которых в основном входят пять химических элементов : углерод С , водород Н , кислород О , сера S и азот N . Кроме того, топливо содержит минеральные примеси А и влагу W , представляющие вместе внешний балласт топлива.

    Химический состав твердых, жидких и газообразных топлив определяют не по количеству соединений, а по суммарной массе химических элементов (в процентах на 1 кг или 1 куб. м топлива), т.е. устанавливают элементарный состав топлива. Различают три основных элементарных состава топлива:

    1) рабочая масса топлива C +H +O +N +S +A +W =100%;

    2) сухая масса топлива C +H +O +N +A =100%;

    3) горючая масса топлива C + H +O +N =100%.

    Рабочей считается масса топлива в том виде, в каком она поступает на предприятие.

    Если топливо нагреть до 102-105ºС, то испарится влага, тогда получится сухая масса топлива. Название горючей массы является условным; так как входящие в его состав азот и кислород не являются горючими элементами и составляют внутренний балласт топлива. Азот и кислород способствуют процессу горения топлива .

    Горючими элементами топлива являются углерод, водород и сера . Углерод – основной, горючий элемент топлива. Он имеет высокую теплоту сгорания (33600 кДж/кг) и составляет большую часть рабочей массы топлива (50-75% для твердых топлив и 80-85% для мазутов). Водород имеет высокую теплоту сгорания (примерно 130000 кДж/кг), однако его количество в твердых топливах невелико (Н = 2-6%) и несколько больше в жидких (около 10%). Это делает теплоту сгорания жидких топлив выше, чем твердых.

    Сера имеет невысокую теплоту сгорания (9000 кДж/кг). Содержание ее в топливах невелико (S =0,2-4%), поэтому сера, как горючая составляющая, не ценится.

    Наличие окислов серы в продуктах сгорания при определенных концентрациях опасно для организмов и растений и требует определенных мер и средств для ее улавливания или рассеивания в атмосфере.

    Классификацию топлив проводят по следующим критериям:

    агрегатному состоянию;

    теплоте сгорания;

    исходному сырью и способам производства;

    целевому назначению или области применения.

    По агрегатному состоянию различают топливо твердое, жидкое и газообразное.

    Твердое топливо для двигателей внутреннего сгорания применяют редко и только после газификации в газогенераторных уста* новках или в пылевидном состоянии.

    Газогенераторные автомобили в сороковые годы получили некоторое распространение и сыграли положительную роль, особенно в тылу во время Великой Отечественной войны, высвободив тысячи тонн бензина для фронта. Для газификации обычно использовали древесные чурки или торф, и в относительно компактных газогенераторах, установленных непосредственно на автомобиле, перерабатывали твердое топливо в генераторный газ, на котором работали двигатели.

    Опыты по применению для газификации каменного угля были неудачны, так как зона горения быстро забивалась шлаком. Позднее, в связи с развитием нефтедобывающей и нефтеперерабатывающей промышленности, газогенераторные автомобили потеряли свое прежнее значение. Пылевидное угольное топливо также не нашло применения в связи с его высокой зольностью.

    Жидкое топливо является основным видом топлива для двигателей внутреннего сгорания всех типов и назначений.

    Газообразное топливо с каждым годом приобретает все большее значение как заменитель жидкого топлива. По ряду свойств оно превосходит жидкое топливо, поэтому следует ожидать дальнейшего расширения области его применения.

    По теплоте сгорания классификация важна в тех случаях, когда необходимо оценить топливо как энергоноситель, а также при тепловых расчетах двигателей, расчете объемов топливных баков и др. По этому признаку различают три группы топлив:

    высококалорийные-с теплотой сгорания более 42 000 кДж/кг;

    среднекалорийные - с теплотой сгорания 25 ООО-42 ООО кДж/кг;

    низкокалорийные - с теплотой сгорания меньше 25 ООО кДж/кг.

    По происхождению топливо классифицируют, если возникает необходимость оценить сырьевую базу или способы получения топлив.При этом все топлива делят на две группы: нефтяного и ненефтяного происхождения.

    Часто топливо ненефтяного происхожедния называют альтерна* тивным топливом, желая тем самым противопоставить его топливу нефтяного происхождения. К альтернативным топливам относятся спирты, водород и почти все виды синтетических углеводородных топлив, т. е. искусственно полученные из ненефтяного сырья бензины, дизельные топлива и т. д. Особо рассматриваются природный газ и топлива, полученные из горючих сланцев (например, сланцевый бензин).

    Поскольку методы переработки нефти имеют существенное значение для оценки показателей качества, то при классификации топлив по их происхождению нефтяные топлива можно дополнительно классифицировать по их технологическим признакам. Например, бензины могут быть подразделены на бензины, полученные прямой перегонкой (прямогониые), бензины термического или каталитического крекинга и т. д.

    По целевому назначению топлива делятся на топлива для двигателей с искровым зажиганием (к ним относятся в основном бензины), дизельное топливо, топливо для турбореактивных двигателей и т. д. Эта классификация может быть и более подробной. Например, дизельное топливо различают для быстроходных двигателей (автомобильных, тракторных и ряда других транспортных машин), для средне- и малооборотных дизелей (судовых, стационарных) и др.