Сходи.  Вхідна група.  Матеріали.  Двері.  Замки.  Дизайн

Сходи. Вхідна група. Матеріали. Двері. Замки. Дизайн

» Теорема синусів косінусів та тангенсів. Правила знаходження тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу

Теорема синусів косінусів та тангенсів. Правила знаходження тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу

Ставлення протилежного катета до гіпотенузи називають синусом гострого кута прямокутного трикутника.

\sin \alpha = \frac(a)(c)

Косинус гострого кута прямокутного трикутника

Відношення прилеглого катета до гіпотенузи називають косинус гострого кутапрямокутного трикутника.

\cos \alpha = \frac(b)(c)

Тангенс гострого кута прямокутного трикутника

Відношення протилежного катета до довколишнього катета називають тангенсом гострого кутапрямокутного трикутника.

tg \alpha = \frac(a)(b)

Котангенс гострого кута прямокутного трикутника

Відношення прилеглого катета до протилежного катета називають котангенсом гострого кутапрямокутного трикутника.

ctg \alpha = \frac(b)(a)

Синус довільного кута

Ордината точки на одиничному колі , якому відповідає кут \alpha називають синусом довільного кутаповороту \ alpha .

\sin \alpha=y

Косинус довільного кута

Абсцис точки на одиничному колі, якому відповідає кут \alpha називають косинус довільного кутаповороту \ alpha .

\cos \alpha=x

Тангенс довільного кута

Ставлення синуса довільного кута повороту \alpha до його косинусу називають тангенсом довільного кутаповороту \ alpha .

tg \alpha = y_(A)

tg \alpha = \frac(\sin \alpha)(\cos \alpha)

Котангенс довільного кута

Відношення косинуса довільного кута повороту \alpha до його синусу називають котангенсом довільного кутаповороту \ alpha .

ctg \alpha =x_(A)

ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

Приклад знаходження довільного кута

Якщо \alpha - деякий кут AOM , де M - точка одиничного кола, то

\sin \alpha=y_(M) , \cos \alpha=x_(M) , tg \alpha=\frac(y_(M))(x_(M)), ctg \alpha=\frac(x_(M))(y_(M)).

Наприклад, якщо \angle AOM = -\frac(\pi)(4), то: ордината точки M дорівнює -\frac(\sqrt(2))(2), абсцису дорівнює \frac(\sqrt(2))(2)і тому

\sin \left (-\frac(\pi)(4) \right)=-\frac(\sqrt(2))(2);

\cos \left (\frac(\pi)(4) \right)=\frac(\sqrt(2))(2);

tg;

ctg \left (-\frac(\pi)(4) \right)=-1.

Таблиця значень синусів косінусів тангенсів котангенсів

Значення основних кутів, що часто зустрічаються, наведені в таблиці:

0^(\circ) (0)30^(\circ)\left(\frac(\pi)(6)\right) 45^(\circ)\left(\frac(\pi)(4)\right) 60^(\circ)\left(\frac(\pi)(3)\right) 90^(\circ)\left(\frac(\pi)(2)\right) 180^(\circ)\left(\pi\right)270^(\circ)\left(\frac(3\pi)(2)\right) 360^(\circ)\left(2\pi\right)
\sin\alpha0 \frac12\frac(\sqrt 2)(2)\frac(\sqrt 3)(2)1 0 −1 0
\cos\alpha1 \frac(\sqrt 3)(2)\frac(\sqrt 2)(2)\frac120 −1 0 1
tg \alpha0 \frac(\sqrt 3)(3)1 \sqrt30 0
ctg \alpha\sqrt31 \frac(\sqrt 3)(3)0 0

Сінусгострого кута α прямокутного трикутника – це відношення протилежногокатета до гіпотенузи.
Позначається так: sin α.

Косінусгострого кута прямокутного трикутника α – це відношення прилеглого катета до гіпотенузи.
Позначається так: cos α.


Тангенс
гострого кута α – це відношення протилежного катета до прилеглого катета.
Позначається так: tg.

Котангенсгострого кута α – це відношення прилеглого катетадо протилежного.
Позначається так: ctg?

Синус, косинус, тангенс та котангенс кута залежать тільки від величини кута.

Правила:

Основні тригонометричні тотожності у прямокутному трикутнику:

(α - гострий кут, що протилежить катету b і прилеглий до катета a . Сторона з - Гіпотенуза. β - Другий гострий кут).

b
sin α = -
c

sin 2 α + cos 2 α = 1

a
cos α = -
c

1
1 + tg 2 α = -
cos 2 α

b
tg α = -
a

1
1 + ctg 2 α = -
sin 2 α

a
ctg α = -
b

1 1
1 + -- = --
tg 2 α sin 2 α

sin α
tg α = -
cos α


При зростанні гострого кута
sin α таtg α зростають, аcos α зменшується.


Для будь-якого гострого кута:

sin (90° - α) = cos α

cos (90° - α) = sin α

Приклад-пояснення:

Нехай у прямокутному трикутнику АВС
АВ = 6,
НД = 3,
кут А = 30 º.

З'ясуємо синус кута А та косинус кута В.

Рішення .

1) Спочатку знаходимо величину кута В. Тут все просто: так як у прямокутному трикутнику сума гострих кутів дорівнює 90 º, то кут В = 60 º:

В = 90 º - 30 º = 60 º.

2) Обчислимо sin A. Ми знаємо, що синус дорівнює відношенню протилежного катета до гіпотенузи. Для кута А протилежним катетом є сторона НД. Отже:

BC 3 1
sin A = - = - = -
AB 6 2

3) Тепер обчислимо cos B. Ми знаємо, що косинус дорівнює відношенню прилеглого катета до гіпотенузи. Для кута В ​​прилеглим катетом є та сама сторона ВС. Це означає, що знову треба розділити ВС на АВ – тобто здійснити самі дії, як і під час обчислення синуса кута А:

BC 3 1
cos B = - = - = -
AB 6 2

У результаті виходить:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

З цього випливає, що у прямокутному трикутнику синус одного гострого кута дорівнює косинусу іншого гострого кута – і навпаки. Саме це і означають наші дві формули:
sin (90° - α) = cos α
cos (90° - α) = sin α

Переконаємося в цьому ще раз:

1) Нехай α = 60 º. Підставивши значення в формулу синуса, отримаємо:
sin (90º – 60º) = cos 60º.
sin 30 º = cos 60 º.

2) Нехай α = 30 º. Підставивши значення в формулу косинуса, отримаємо:
cos (90 ° - 30 º) = sin 30 º.
cos 60 ° = sin 30 º.

(Докладніше про тригонометрію - див. розділ Алгебра)

Вивчення тригонометрії ми розпочнемо із прямокутного трикутника. Визначимо, що таке синус та косинус, а також тангенс та котангенс гострого кута. Це є основи тригонометрії.

Нагадаємо, що прямий кут- це кут, що дорівнює 90 градусів. Іншими словами, половина розгорнутого кута.

Гострий кут- менше 90 градусів.

Тупий кут- більший за 90 градусів. Стосовно такого кута «тупий» - не образа, а математичний термін:-)

Намалюємо прямокутний трикутник. Прямий кут зазвичай позначається. Звернімо увагу, що сторона, що лежить навпроти кута, позначається тією ж літерою, лише маленькою. Так, сторона, що лежить навпроти кута A, позначається .

Кут позначається відповідною грецькою літерою.

Гіпотенузапрямокутного трикутника - це сторона, що лежить навпроти прямого кута.

Катети- Сторони, що лежать навпроти гострих кутів.

Катет, що лежить навпроти кута, називається протилежним(По відношенню до кута). Інший катет, який лежить на одній із сторін кута, називається прилеглим.

Сінусгострого кута в прямокутному трикутнику - це відношення протилежного катета до гіпотенузи:

Косінусгострого кута у прямокутному трикутнику - відношення прилеглого катета до гіпотенузи:

Тангенсгострого кута в прямокутному трикутнику - відношення протилежного катета до прилеглого:

Інше (рівносильне) визначення: тангенсом гострого кута називається відношення синуса кута до його косинусу:

Котангенсгострого кута в прямокутному трикутнику - відношення прилеглого катета до протилежного (або, що те саме, відношення косинуса до синуса):

Зверніть увагу на основні співвідношення для синуса, косинуса, тангенсу та котангенсу, які наведені нижче. Вони стануть у нагоді нам при вирішенні завдань.

Давайте доведемо деякі з них.

Добре, ми дали визначення та записали формули. А для чого ж потрібні синус, косинус, тангенс і котангенс?

Ми знаємо, що сума кутів будь-якого трикутника дорівнює.

Знаємо співвідношення між сторонамипрямокутного трикутника. Це теорема Піфагора: .

Виходить, що знаючи два кути в трикутнику можна знайти третій. Знаючи дві сторони прямокутного трикутника, можна знайти третю. Значить, для кутів – своє співвідношення, для сторін – своє. А що робити, якщо у прямокутному трикутнику відомий один кут (крім прямого) та одна сторона, а знайти треба інші сторони?

З цим і зіткнулися люди в минулому, складаючи карти місцевості та зоряного неба. Адже не завжди можна безпосередньо виміряти усі сторони трикутника.

Синус, косинус та тангенс - їх ще називають тригонометричними функціями кута- дають співвідношення між сторонамиі кутамитрикутник. Знаючи кут, можна знайти всі його тригонометричні функції за спеціальними таблицями. А знаючи синуси, косинуси та тангенси кутів трикутника та одну з його сторін, можна знайти інші.

Ми також намалюємо таблицю значень синуса, косинуса, тангенсу та котангенсу для «хороших» кутів від до .

Зверніть увагу на два червоні прочерки в таблиці. При відповідних значеннях кутів тангенс та котангенс не існують.

Розберемо кілька завдань із тригонометрії з Банку завдань ФІПД.

1. У трикутнику кут дорівнює . Знайдіть .

Завдання вирішується за чотири секунди.

Оскільки , .

2 . У трикутнику кут дорівнює , , . Знайдіть .

Знайдемо за теоремою Піфагора.

Завдання вирішено.

Часто в задачах зустрічаються трикутники з кутами або з кутами і . Основні співвідношення для них запам'ятовуйте напам'ять!

Для трикутника з кутами і катет, що лежить навпроти кута, дорівнює половині гіпотенузи.

Трикутник з кутами і рівнобедрений. У ньому гіпотенуза в раз більше катета.

Ми розглянули завдання розв'язання прямокутних трикутників - тобто перебування невідомих сторін чи кутів. Але це не все! У варіантах ЄДІз математики безліч завдань, де фігурує синус, косинус, тангенс чи котангенс зовнішнього кута трикутника. Про це – у наступній статті.

Синус є однією з основних тригонометричних функцій, застосування якої не обмежене лише геометрією. Таблиці обчислення тригонометричних функцій, як і інженерні калькулятори, не завжди під рукою, а обчислення синуса часом потрібне для вирішення різних завдань. Взагалі, обчислення синуса допоможе закріпити креслярські навички та знання тригонометричних тотожностей.

Ігри з лінійкою та олівцем

Просте завдання: як знайти синус кута, намальованого на папері? Для вирішення знадобиться звичайна лінійка, трикутник (або циркуль) та олівець. Найпростішим способом обчислити синус кута можна розділивши дальній катет трикутника з прямим кутом на довгу сторону - гіпотенузу. Таким чином, спочатку потрібно доповнити гострий кут до фігури прямокутного трикутника, прокресливши перпендикулярну до одного з променів лінію на довільній відстані від вершини кута. Потрібно дотримати кут саме 90 °, для чого нам і знадобиться канцелярський трикутник.

Використання циркуля трохи точніше, але займе більше часу. На одному з променів потрібно відзначити 2 точки на деякій відстані, налаштувати на циркулі радіус, приблизно рівний відстані між точками, і прокреслити півкола з центрами в цих точках до отримання перетинів цих ліній. Поєднавши точки перетину наших кіл між собою, ми отримаємо строгий перпендикуляр до променя нашого кута, залишається лише продовжити лінію до перетину з іншим променем.

В отриманому трикутнику потрібно лінійкою виміряти бік навпроти кута і довгу бік одному з променів. Відношення першого виміру до другого і буде шуканою величиною синуса гострого кута.

Знайти синус для кута більше 90°

Для тупого кутаЗавдання не набагато складніше. Потрібно прокреслити промінь з вершини в протилежний бік за допомогою лінійки для утворення прямої з одним з променів кута, що цікавить нас. З отриманим гострим кутом слід надходити як описано вище, синуси суміжних кутів, Що утворюють разом розгорнутий кут 180 °, рівні.

Обчислення синуса за іншими тригонометричними функціями

Також обчислення синуса можливе, якщо відомі значення інших тригонометричних функцій кута або хоча б довжини сторін трикутника. У цьому нам допоможуть тригонометричні тотожності. Розберемо найпоширеніші приклади.

Як знаходити синус при відомому косинус кута? Перше тригонометричне тотожність, що виходить з теореми Піфагора, свідчить, що сума квадратів синуса і косинуса одного і того ж кута дорівнює одиниці.

Як знаходити синус за відомого тангенсу кута? Тангенс отримують розподілом далекого катета на ближній або поділом синуса на косинус. Таким чином, синусом буде твір косинуса на тангенс, а квадрат синусу буде квадрат цього твору. Замінюємо косинус у квадраті на різницю між одиницею і квадратним синусом згідно з першою тригонометричною тотожністю і шляхом нехитрих маніпуляцій наводимо рівняння до обчислення квадратного синуса через тангенс, відповідно для обчислення синуса доведеться витягти корінь з отриманого результату.

Як знаходити синус за відомого котангенсу кута? Значення котангенсу можна обчислити, розділивши довжину ближнього від кута катета на довжину далекого, а також поділивши косинус на синус, тобто котангенс - функція, зворотна тангенсу щодо числа 1. Для розрахунку синуса можна обчислити тангенс за формулою tg α = 1 / ct скористатися формулою у другому варіанті. Також можна вивести пряму формулу за аналогією з тангенсом, яка виглядатиме таким чином.

Як знаходити синус по трьох сторонах трикутника

Існує формула для знаходження довжини невідомої сторони будь-якого трикутника, не тільки прямокутного, по двох відомим сторонамз використанням тригонометричної функції косинуса протилежного кута. Виглядає вона так.

Ну, а синус можна далі розрахувати по косінусу згідно з формулами вище.

Як знайти синус?




Вивчення геометрії допомагає розвивати мислення. Цей предмет обов'язково входить до шкільної підготовки. У життєдіяльності знання цього предмета може стати в нагоді - наприклад, при плануванні квартири.

З історії

В рамках курсу геометрії вивчається також тригонометрія, яка досліджує тригонометричні функції. У тригонометрії ми вивчаємо синуси, косинуси, тангенси та котангенси кута.

Але зараз почнемо з найпростішого - синуса. Давайте розглянемо детальніше перше поняття - синус кута в геометрії. Що таке синус та як його знайти?

Поняття «синус кута» та синусоїди

Синус кута – це співвідношення значень протилежного катета та гіпотенузи прямокутного трикутника. Це пряма тригонометрична функція, яка на письмі позначається як "sin(x)", де (х) - кут трикутника.

На графіку синус кута позначається синусоїдою зі своїми особливостями. Синусоїда виглядає як безперервна хвилеподібна лінія, що лежить у певних рамках на площині координат. Функція непарна, тому симетрична щодо 0 на площині координат (виходить із початку відліку координат).

Область визначення цієї функції лежить у діапазоні від -1 до +1 декартової системі координат. Період функції синус кута становить 2 Пі. Це означає, що кожні 2 Пі малюнок повторюється, і синусоїда проходить повний цикл.

Рівняння синусоїди

  • sin х = a/c
  • де а - протилежний до куту трикутника катет
  • с - гіпотенуза прямокутного трикутника

Властивості синуса кута

  1. sin(x) = - sin(x). Ця особливість демонструє, що функція симетрична, і якщо відкласти системі координат в обидві сторони значення х і (-х), то ординати цих точок будуть протилежними. Вони будуть на рівній відстані один від одного.
  2. Ще однією особливістю цієї функції є те, що графік функції зростає на відрізку [-П/2+2Пn]; [П/2 + 2Пn], де n – будь-яке ціле число. Зменшення графіка синуса кута спостерігатиметься на відрізку: [П/2 + 2 Пn]; [3П/2 + 2Пn].
  3. sin(x) > 0, коли х лежить у діапазоні (2Пn, П + 2Пn)
  4. (x)< 0, когда х находится в диапазоне (-П+2Пn, 2Пn)

Значення синусів кута визначаються за спеціальними таблицями. Створено такі таблиці для полегшення процесу підрахунку складних формулта рівнянь. Вона легка у використанні та містить значення не тільки функції sin(x), а також значення інших функцій.

Понад те, таблиця стандартних значень цих функцій включено до обов'язкового вивчення пам'ять, як таблиця множення. Особливо це актуально для класів із фізико-математичним ухилом. У таблиці можна побачити значення основних кутів, що використовуються в тригонометрії: 0, 15, 30, 45, 60, 75, 90, 120, 135, 150, 180, 270 і 360 градусів.

Також існує таблиця, визначальна значення тригонометричних функцій нестандартних кутів. Користуючись різними таблицями, можна легко обчислити синус, косинус, тангенс і котангенс деяких кутів.

З тригонометричними функціями складаються рівняння. Вирішувати ці рівняння легко, якщо знати прості тригонометричні тотожності та приведення функцій, наприклад, такі, як sin(П/2 + х) = cos(x) та інші. Для таких наведень також складено окрему таблицю.

Як знайти синус кута

Коли стоїть завдання знайти синус кута, а за умовою у нас є тільки косинус, тангенс або котангенс кута, ми легко можемо обчислити потрібне за допомогою тригонометричних тотожностей.

  • sin 2 x + cos 2 x = 1

Виходячи з цього рівняння, ми можемо знайти як синус, і косинус, залежно від цього, яке значення невідомо. У нас вийде тригонометричне рівнянняз одним невідомим:

  • sin 2 x = 1 - cos 2 x
  • sin x = ± √ 1 - cos 2 x
  • ctg 2 x + 1 = 1 / sin 2 x

На цьому рівняння можна знайти значення синуса, знаючи значення котангенса кута. Для спрощення замініть sin 2 x = у і тоді у вас вийде просте рівняння. Наприклад, значення котангенсу дорівнює 1, тоді:

  • 1 + 1 = 1/у
  • 2 = 1/у
  • 2у = 1
  • у = 1/2

Тепер виконуємо зворотну заміну гравця:

  • sin 2 x = ½
  • sin x = 1 / √2

Оскільки ми взяли значення котангенсу стандартного кута (45 0), отримані значення можна перевірити по таблиці .

Якщо у вас дано значення тангенсу, а потрібно знайти синус, допоможе ще одна тригонометрична тотожність:

  • tg x * ctg x = 1

З цього виходить що:

  • ctg x = 1 / tg x

Для того щоб знайти синус нестандартного кута, наприклад, 240 0 необхідно скористатися формулами приведення кутів. Ми знаємо, що π у нас відповідає 180 0 . Таким чином, ми висловимо нашу рівність за допомогою стандартних кутів шляхом розкладання.

  • 240 0 = 180 0 + 60 0

Нам потрібно знайти таке: sin (180 0 + 60 0). У тригонометрії є формули приведення, які в даному випадкустануть у пригоді. Це формула:

  • sin(π+х) = - sin(х)

Таким чином, синус кута 240 градусів дорівнює:

  • sin (180 0 + 60 0) = - sin (60 0) = - √3/2

У нашому випадку, х = 60, а П відповідно 180 градусів. Значення (-√3/2) знайшли за таблиці значень функцій стандартних кутів.

Таким чином, можна розкласти нестандартні кути, наприклад: 210 = 180 + 30.