Сходи.  Вхідна група.  Матеріали.  Двері.  Замки.  Дизайн

Сходи. Вхідна група. Матеріали. Двері. Замки. Дизайн

» Вираз для обчислення площі фігур. Як знайти площу фігури? V. Домашнє завдання

Вираз для обчислення площі фігур. Як знайти площу фігури? V. Домашнє завдання

У попередньому розділі, присвяченому розбору геометричного сенсу певного інтеграла, ми отримали низку формул для обчислення площі криволінійної трапеції:

S (G) = ∫ a b f (x) d x для безперервної та невід'ємної функції y = f (x) на відрізку [a; b ] ,

S (G) = - ∫ a b f (x) d x для безперервної та непозитивної функції y = f (x) на відрізку [a; b].

Ці формули застосовні для вирішення простих завдань. Насправді ж нам частіше доведеться працювати з складнішими фігурами. У зв'язку з цим, цей розділ ми присвятимо розбору алгоритмів обчислення площі фігур, які обмежені функціями явно, тобто. як y = f(x) або x = g(y) .

Теорема

Нехай функції y = f 1 (x) та y = f 2 (x) визначені і безперервні на відрізку [a; b], причому f 1 (x) ≤ f 2 (x) для будь-якого значення x з [a; b]. Тоді формула для обчислення площі фігури G обмеженою лініями x = a , x = b , y = f 1 (x) і y = f 2 (x) матиме вигляд S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Схожа формула буде застосовна для площі фігури, обмеженої лініями y = c , y = d , x = g 1 (y) та x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y.

Доведення

Розберемо три випадки, котрим формула буде справедлива.

У першому випадку, враховуючи властивість адитивності площі, сума площ вихідної фігури G і криволінійної трапеції G 1 дорівнює площі фігури G 2 . Це означає що

Тому S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x.

Виконати останній перехід ми можемо з використанням третьої якості певного інтеграла.

У другому випадку справедлива рівність: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графічна ілюстрація матиме вигляд:

Якщо обидві функції непозитивні, отримуємо: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графічна ілюстрація матиме вигляд:

Перейдемо до розгляду загального випадку, коли y = f 1 (x) та y = f 2 (x) перетинають вісь O x .

Точки перетину ми позначимо як x i, i = 1, 2,. . . , n-1. Ці точки розбивають відрізок [a; b] на n частин x i-1; x i, i = 1, 2,. . . , n де α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Отже,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Останній перехід ми можемо здійснити з використанням п'ятої якості певного інтеграла.

Проілюструємо на графіку загальний випадок.

Формулу S(G) = ∫ a b f 2 (x) - f 1 (x) d x можна вважати доведеною.

А тепер перейдемо до розбору прикладів обчислення площі фігур, які обмежені лініями y = f(x) та x = g(y) .

Розгляд будь-якого з прикладів ми починатимемо з побудови графіка. Зображення дозволить нам представляти складні фігури як поєднання простіших фігур. Якщо побудова графіків і фігур на них викликає у вас труднощі, можете вивчити розділ про основні елементарні функції, геометричне перетворення графіків функцій, а також побудову графіків під час дослідження функції.

Приклад 1

Необхідно визначити площу фігури, яка обмежена параболою y = - x 2 + 6 x - 5 і прямими лініями y = - 1 3 x - 1 2 x = 1 x = 4 .

Рішення

Зобразимо лінії на графіку в системі декартової координат.

На відрізку [1; 4 ] графік параболи y = - x 2 + 6 x - 5 розташований вище за пряму y = - 1 3 x - 1 2 . У зв'язку з цим для отримання відповіді використовуємо формулу, отриману раніше, а також спосіб обчислення певного інтеграла за формулою Ньютона-Лейбніца:

S(G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Відповідь: S(G) = 13

Розглянемо складніший приклад.

Приклад 2

Необхідно обчислити площу фігури, яка обмежена лініями y = x + 2, y = x, x = 7.

Рішення

В даному випадку ми маємо тільки одну пряму лінію, розташовану паралельно осі абсцис. Це x = 7. Це вимагає від нас знайти другу межу інтегрування самостійно.

Побудуємо графік та нанесемо на нього лінії, дані за умови завдання.

Маючи графік перед очима, ми легко можемо визначити, що нижньою межею інтегрування буде абсцис точки перетину графіка прямої y = x і напів параболи y = x + 2 . Для знаходження абсциси використовуємо рівності:

y = x + 2 О Д З З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (-1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Виходить, що абсцис точки перетину є x = 2 .

Звертаємо вашу увагу на той факт, що в загальному прикладі на кресленні лінії y = x + 2, y = x перетинаються в точці (2; 2), тому такі докладні обчислення можуть здатися зайвими. Ми привели тут таке докладне рішення лише тому, що у складніших випадках рішення може бути не таким очевидним. Це означає, що координати перетину ліній краще завжди обчислювати аналітично.

На інтервалі [2; 7] графік функції y = x розташований вище за графік функції y = x + 2 . Застосуємо формулу для обчислення площі:

S(G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Відповідь: S(G) = 59 6

Приклад 3

Необхідно обчислити площу фігури, яка обмежена графіками функцій y = 1 x та y = - x 2 + 4 x - 2 .

Рішення

Нанесемо лінії на графік.

Визначимося з межами інтегрування. Для цього визначимо координати точок перетину ліній, прирівнявши вирази 1 x - x 2 + 4 x - 2 . За умови, що x не дорівнює нулю, рівність 1 x = - x 2 + 4 x - 2 стає еквівалентним рівнянню третього ступеня - x 3 + 4 x 2 - 2 x - 1 = 0 із цілими коефіцієнтами. Освіжити в пам'яті алгоритм вирішення таких рівнянь ми можете, звернувшись до розділу «Рішення кубічних рівнянь».

Коренем цього рівняння є х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Розділивши вираз - x 3 + 4 x 2 - 2 x - 1 на двочлен x - 1 отримуємо: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Коріння, що залишилося, ми можемо знайти з рівняння x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (-3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Ми знайшли інтервал x ∈ 1; 3 + 13 2 , на якому фігура G укладена вище синій і нижче червоної лінії. Це допомагає нам визначити площу фігури:

S(G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Відповідь: S(G) = 7 + 13 3 - ln 3 + 13 2

Приклад 4

Необхідно обчислити площу фігури, яка обмежена кривими y = x 3 , y = - log 2 x + 1 і віссю абсцис.

Рішення

Нанесемо усі лінії на графік. Ми можемо отримати графік функції y = - log 2 x + 1 з графіка y = log 2 x якщо розташуємо його симетрично щодо осі абсцис і піднімемо на одну одиницю вгору. Рівняння осі абсцис у = 0.

Позначимо точки перетину ліній.

Як очевидно з малюнка, графіки функцій y = x 3 і y = 0 перетинаються у точці (0 ; 0) . Так виходить тому, що х = 0 є єдиним дійсним коренем рівняння х 3 = 0 .

x = 2 є єдиним коренем рівняння - log 2 x + 1 = 0 тому графіки функцій y = - log 2 x + 1 і y = 0 перетинаються в точці (2 ; 0) .

x = 1 є єдиним коренем рівняння x 3 = - log 2 x + 1. У зв'язку з цим графіки функцій y = x 3 і y = - log 2 x + 1 перетинаються в точці (1; 1). Останнє твердження може бути неочевидним, але рівняння x 3 = - log 2 x + 1 не може мати більше одного кореня, так як функція y = x 3 є строго зростаючою, а функція y = - log 2 x + 1 строго спадаючою.

Подальше рішення передбачає кілька варіантів.

Варіант №1

Фігуру G ми можемо представити як суму двох криволінійних трапецій, розташованих вище за осі абсцис, перша з яких розташовується нижче середньої лінії на відрізку x ∈ 0 ; 1 , а друга нижче за червону лінію на відрізку x ∈ 1 ; 2 . Це означає, що площа дорівнює S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Варіант №2

Фігуру G можна представити як різницю двох фігур, перша з яких розташована вище за осі абсцис і нижче за синю лінію на відрізку x ∈ 0 ; 2 , а друга між червоною та синьою лініями на відрізку x ∈ 1 ; 2 . Це дозволяє нам знайти площу наступним чином:

S(G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В цьому випадку для знаходження площі доведеться використовувати формулу виду S (G) = c d (g 2 (y) - g 1 (y)) d y . Фактично, лінії, які обмежують фігуру, можна подати у вигляді функцій від аргументу y .

Дозволимо рівняння y = x 3 і - log 2 x + 1 щодо x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Отримаємо потрібну площу:

S(G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Відповідь: S(G) = 1 ln 2 - 1 4

Приклад 5

Необхідно обчислити площу фігури, обмежену лініями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Рішення

Червоною лінією нанесемо графік лінію, задану функцією y = x . Синім кольором нанесемо лінію y = -1 2 x + 4, чорним кольором позначимо лінію y = 2 3 x - 3.

Зазначимо точки перетину.

Знайдемо точки перетину графіків функцій y = x та y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 П о верка: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 не я в л я т с я р е ш е н ня му р а в н е н і я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н н я е м у р а в н і н я ⇒ (4 ; 2) т о к а п е р е с е н і я y = x та y = - 1 2 x + 4

Знайдемо точку перетину графіків функцій y = x та y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 Перевірка: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н н е м у р а в н е н я ⇒ (9 ; 3) т о к а перес е ч а н я y = x і y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я ет с я р е ш е н н ня м у р я в н е ня

Знайдемо точку перетину ліній y = - 1 2 x + 4 і y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 1) точка перес е чен ня y = - 1 2 x + 4 і y = 2 3 x - 3

Спосіб №1

Представимо площу шуканої фігури як суму площ окремих фігур.

Тоді площа фігури дорівнює:

S(G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Спосіб №2

Площа вихідної фігури можна як суму двох інших фігур.

Тоді розв'яжемо рівняння лінії щодо x , а тільки після цього застосуємо формулу обчислення площі фігури.

y = x ⇒ x = y 2 до р а з н а я л і н і я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 1 2 x + 4 ⇒ x = - 2 y + 8 с і н я л і н і я

Таким чином, площа дорівнює:

S(G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Як бачите, значення збігаються.

Відповідь: S(G) = 11 3

Підсумки

Для знаходження площі фігури, яка обмежена заданими лініями, нам необхідно побудувати лінії на площині, знайти точки їх перетину, застосувати формулу для знаходження площі. У цьому розділі ми розглянули варіанти завдань, що найчастіше зустрічаються.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Визначений інтеграл. Як обчислити площу фігури

Переходимо до розгляду додатків інтегрального обчислення. На цьому уроці ми розберемо типове та найбільш поширене завдання – як за допомогою певного інтегралу обчислити площу плоскої фігури. Нарешті ті, хто шукає значення у вищій математиці - і знайдуть його. Мало чи. Доведеться ось у житті наближати дачну ділянку елементарними функціями і знаходити її площу за допомогою певного інтегралу.

Для успішного освоєння матеріалу необхідно:

1) Розбиратися у невизначеному інтегралі хоча б на середньому рівні. Таким чином, чайникам для початку слід ознайомитись з уроком Не.

2) Вміти застосовувати формулу Ньютона-Лейбніца та обчислювати певний інтеграл. Налагодити теплі дружні стосунки із певними інтегралами можна на сторінці Визначений інтеграл. Приклади рішень.

Насправді, для того щоб знаходити площу фігури не треба так багато знань з невизначеного і певного інтегралу. Завдання «обчислити площу за допомогою певного інтегралу» завжди передбачає побудову кресленняТому набагато актуальнішим питанням будуть ваші знання та навички побудови креслень. У зв'язку з цим корисно освіжити в пам'яті графіки основних елементарних функцій, а, як мінімум, вміти будувати пряму, параболу та гіперболу. Зробити це можна (багатьом – потрібно) за допомогою методичного матеріалу та статті про геометричні перетворення графіків.

Власне, із завданням знаходження площі за допомогою певного інтеграла всі знайомі ще зі школи, і ми мало підемо вперед від шкільної програми. Цієї статті взагалі могло б і не бути, але справа в тому, що завдання зустрічається в 99 випадків зі 100, коли студент страждає від ненависної вежі із захопленням освоює курс вищої математики.

Матеріали даного практикуму викладено легко, докладно і з мінімумом теорії.

Почнемо з криволінійної трапеції.

Криволінійною трапецієюназивається плоска фігура, обмежена віссю , прямими і графіком безперервної на відрізку функції , яка не змінює знак на цьому проміжку. Нехай ця фігура розташована не нижчеосі абсцис:

Тоді площа криволінійної трапеції чисельно дорівнює певному інтегралу. Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст. На уроці Визначений інтеграл. Приклади рішенья говорив, що певний інтеграл це число. А зараз настав час констатувати ще один корисний факт. З погляду геометрії певний інтеграл – це ПЛОЩА.

Тобто, певному інтегралу (якщо він існує) геометрично відповідає площа деякої фігури. Наприклад, розглянемо певний інтеграл. Підінтегральна функція задає на площині криву, що знаходиться вище за осі (бажаючі можуть виконати креслення), а сам певний інтеграл чисельно дорівнює площі відповідної криволінійної трапеції.

Приклад 1

Це типове формулювання завдання. Перший та найважливіший момент рішення – побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім– параболи, гіперболи, графіки інших функцій. Графіки функцій вигідніше будувати крапково, з технікою поточкової побудови можна ознайомитись у довідковому матеріалі Графіки та властивості елементарних функцій. Там же можна знайти дуже корисний стосовно нашого уроку матеріал – як швидко побудувати параболу.

У цій задачі рішення може виглядати так.
Виконаємо креслення (зверніть увагу, що рівняння задає вісь):


Штрихувати криволінійну трапецію я не буду, тут очевидно, про яку площу йдеться. Рішення продовжується так:

На відрізку графік функції розташований над віссютому:

Відповідь:

У кого виникли труднощі з обчисленням певного інтегралу та застосуванням формули Ньютона-Лейбніца , зверніться до лекції Визначений інтеграл. Приклади рішень.

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на око» підраховуємо кількість клітинок у кресленні – ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 2

Обчислити площу фігури, обмеженою лініями , , та віссю

Це приклад самостійного рішення. Повне рішення та відповідь наприкінці уроку.

Що робити, якщо криволінійна трапеція розташована під віссю?

Приклад 3

Обчислити площу фігури, обмеженою лініями і координатними осями.

Рішення: Виконаємо креслення:

Якщо криволінійна трапеція розташована під віссю(або, принаймні, Не вищеданої осі), то її площу можна знайти за формулою:
В даному випадку:

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями , .

Рішення: Спочатку потрібно виконати креслення Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи та прямий. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Значить, нижня межа інтегрування, верхня межа інтегрування.
Цим способом краще, наскільки можна, не користуватися.

Набагато вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Техніка поточкової побудови для різних графіків детально розглянута у довідці Графіки та властивості елементарних функцій. Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). І такий приклад ми теж розглянемо.

Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

Повторюся, що за поточечному побудові межі інтегрування найчастіше з'ясовуються «автоматом».

А тепер робоча формула: Якщо на відрізку деяка безперервна функція більше або дорівнюєдеякої безперервної функції , то площа фігури, обмеженої графіками даних функцій і прямими , можна знайти за формулою:

Тут уже не треба думати, де розташована постать - над віссю або під віссю, і, грубо кажучи, важливо, який графік Вище(щодо іншого графіка), а який – НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою зверху і прямою знизу.
На відрізку , за відповідною формулою:

Відповідь:

Насправді шкільна формула для площі криволінійної трапеції у нижній напівплощині (див. простенький приклад №3) – окремий випадок формули . Оскільки вісь задається рівнянням, а графік функції розташований Не вищеосі , то

А зараз пара прикладів для самостійного вирішення

Приклад 5

Приклад 6

Знайти площу фігури, обмеженою лініями , .

У ході вирішення завдань на обчислення площі за допомогою певного інтегралу іноді трапляється кумедний казус. Креслення виконано правильно, розрахунки – правильно, але через неуважність… знайдено площу не тієї фігури, саме так кілька разів лажався ваш покірний слуга. Ось реальний випадок із життя:

Приклад 7

Обчислити площу фігури, обмеженою лініями , , , .

Рішення: Спочатку виконаємо креслення:

…Ех, креслення хрінонький вийшов, але начебто все розбірливо.

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці через неуважність нерідко виникає «глюк», що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад корисний і тим, що в ньому площа фігури вважається за допомогою двох певних інтегралів. Дійсно:

1) На відрізку над віссю розташований графік прямий;

2) На відрізку над віссю розташований графік гіперболи.

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Відповідь:

Переходимо ще до одного змістовного завдання.

Приклад 8

Обчислити площу фігури, обмеженою лініями ,
Представимо рівняння в «шкільному» вигляді і виконаємо поточковий креслення:

З креслення видно, що верхню межу ми «хороший»: .
Але чому дорівнює нижня межа?! Зрозуміло, що це ціле число, але яке? Може бути ? Але де гарантія, що креслення виконано з ідеальною точністю, цілком може виявитися . Або корінь. А якщо ми взагалі неправильно збудували графік?

У таких випадках доводиться витрачати додатковий час та уточнювати межі інтегрування аналітично.

Знайдемо точки перетину прямої та параболи.
Для цього розв'язуємо рівняння:


,

Справді, .

Подальше рішення тривіально, головне, не заплутатися у підстановках та знаках, обчислення тут не найпростіші.

На відрізку , за відповідною формулою:

Відповідь:

Ну, і на закінчення уроку, розглянемо два завдання складніше.

Приклад 9

Обчислити площу фігури, обмеженою лініями , ,

Рішення: Зобразимо цю фігуру на кресленні

Блін, забув графік підписати, а переробляти картинку, вибачте, не хоче. Чи не креслярський, коротше, сьогодні день =)

Для поточкового побудови необхідно знати зовнішній вигляд синусоїди (і взагалі корисно знати графіки всіх елементарних функцій), а також деякі значення синуса, їх можна знайти в тригонометричної таблиці. У ряді випадків (як у цьому) допускається побудова схематичного креслення, на якому принципово правильно повинні бути відображені графіки та межі інтегрування.

З межами інтегрування тут проблем немає, вони випливають з умови: – «ікс» змінюється від нуля до «пі». Оформлюємо подальше рішення:

На відрізку графік функції розташований над віссю, тому:

Інструкція

Зручно діяти, якщо ваша фігура – ​​багатокутник. Ви завжди зможете розбити його на кінцеве число, і вам достатньо пам'ятати одну лише формулу - площі трикутника. Отже, трикутника - це половина від добутку довжини його сторони на довжину висоти, проведеної до цієї сторони. Підсумовувавши площі окремих трикутників, у які вашою волею перетворена складніша, ви дізнаєтеся шуканий результат.

Складніше розв'язати завдання з визначенням площі довільної фігури. У такої фігури можуть бути не тільки, але й криволінійні межі. Є методи для приблизного обчислення. Прості.

По-перше, ви можете використовувати палетку. Це інструмент із прозорого матеріалу з нанесеною на його поверхню сіткою квадратів або трикутників із відомою площею. Наклавши палетку поверх фігури, на яку шукаєте площу, ви перераховуєте кількість ваших одиниць виміру, які перекривають зображення. Поєднуйте неповністю закриті одиниці виміру один з одним, доповнюючи їх в розумі до повних. Далі, помноживши площу однієї фігури палетки на число, яке підрахували, ви дізнаєтесь про приблизну площу вашої довільної фігури. Зрозуміло, що чим частіша сітка нанесена на вашій палетці, тим точніше ваш результат.

По-друге, ви можете всередині меж довільної фігури, для якої визначаєте площу, окреслити максимальну кількість трикутників. Визначити площу кожного та скласти їх площі. Це буде дуже приблизний результат. Якщо ви бажаєте, то можете окремо визначити площу сегментів, обмежених дугами. Для цього уявіть собі, що сегмент – частина від кола. Побудуйте це коло, а потім від центру проведіть радіуси до країв дуги. Відрізки утворюють між собою кут α. Площа всього сектора визначається за формулою π*R^2*α/360. Для кожної дрібнішої частини вашої фігури ви визначаєте площу та отримуєте загальний результат, склавши отримані значення.

Третій спосіб складніше, але точніше і для когось, простіше. Площу будь-якої фігури можна визначити за допомогою інтегрального обчислення. Певний інтеграл функції показує площу від графіка функції до абсциси. Площа укладену між двома графіками можна визначити відніманням певного інтеграла, з меншим значенням, з інтеграла в тих же межах, але з великим значенням. Для використання цього методу зручно перенести вашу довільну фігуру в систему координат і далі визначити їх функції та діяти методами вищої математики, в яку тут і зараз не заглиблюватимемося.

Площа геометричної фігури- чисельна характеристика геометричної фігури, що показує розмір цієї фігури (частини поверхні, обмеженої замкнутим контуром цієї фігури). Розмір площі виражається числом які у неї квадратних одиниць.

Формули площі трикутника

  1. Формула площі трикутника по стороні та висоті
    Площа трикутникадорівнює половині добутку довжини сторони трикутника на довжину проведеної до цієї сторони висоти
  2. Формула площі трикутника по трьох сторонах і радіусу описаного кола
  3. Формула площі трикутника по трьох сторонах і радіусу вписаного кола
    Площа трикутникадорівнює добутку напівпериметра трикутника на радіус вписаного кола.
  4. де S - площа трикутника,
    - Довжини сторін трикутника,
    - Висота трикутника,
    - кут між сторонами та,
    - радіус вписаного кола,
    R - радіус описаного кола,

Формули площі квадрата

  1. Формула площі квадрата по довжині сторони
    Площа квадратадорівнює квадрату довжини його сторони.
  2. Формула площі квадрата за довжиною діагоналі
    Площа квадратадорівнює половині квадрата довжини його діагоналі.
    S =1 2
    2
  3. де S - Площа квадрата,
    - Довжина сторони квадрата,
    - Довжина діагоналі квадрата.

Формула площі прямокутника

    Площа прямокутникадорівнює добутку довжин двох його суміжних сторін

    де S - Площа прямокутника,
    - Довжини сторін прямокутника.

Формули площі паралелограма

  1. Формула площі паралелограма по довжині сторони та висоті
    Площа паралелограма
  2. Формула площі паралелограма по обидва боки та кут між ними
    Площа паралелограмадорівнює добутку довжин його сторін, помноженому на синус кута між ними.

    a · b · sin α

  3. де S - Площа паралелограма,
    - Довжини сторін паралелограма,
    - Довжина висоти паралелограма,
    - Кут між сторонами паралелограма.

Формули площі ромба

  1. Формула площі ромба по довжині сторони та висоті
    Площа ромбудорівнює добутку довжини його сторони та довжини опущеної на цей бік висоти.
  2. Формула площі ромба по довжині сторони та куту
    Площа ромбудорівнює добутку квадрата довжини його сторони та синуса кута між сторонами ромба.
  3. Формула площі ромба за довжинами його діагоналей
    Площа ромбудорівнює половині добутку довжин його діагоналей.
  4. де S - Площа ромба,
    - Довжина сторони ромба,
    - Довжина висоти ромба,
    - Кут між сторонами ромба,
    1 2 - довжини діагоналей.

Формули площі трапеції

  1. Формула Герону для трапеції

    Де S - Площа трапеції,
    - Довжини основ трапеції,
    - Довжини бічних сторін трапеції,

У геометрії площа фігури одна із основних чисельних характеристик плоского тіла. Що таке площу, як її визначати у різних фігур, а також які властивості вона має - всі ці питання ми розглянемо у цій статті.

Що таке площа: визначення

Площа фігури – це число одиничних квадратів у цій фігурі; неформально кажучи, це розмір фігури. Найчастіше площа фігури позначається як «S». Її можна виміряти за допомогою палетки або приладу планіметра. Також площу фігури можна обчислити, знаючи основні її розміри. Наприклад, площа трикутника можна обчислити за трьома різними формулами:

Площа прямокутника дорівнює добутку його ширини на довжину, а площа круга дорівнює добутку квадрата радіусу на число π=3,14.

Властивості площі фігури

  • площа дорівнює рівних фігур;
  • площа завжди невід'ємна;
  • одиницею виміру площі є площа квадрата зі стороною, що дорівнює 1 одиниці довжини;
  • якщо фігура розділена на дві частини, то загальна площа фігури дорівнює сумі площ складових її частин;
  • фігури, рівні за площею, називаються рівновеликими;
  • якщо одна фігура належить іншій фігурі, площа першої неспроможна перевищувати площі другий.