Stairs.  Entry group.  Materials.  Doors.  Locks.  Design

Stairs. Entry group. Materials. Doors. Locks. Design

» A rectangular parallelepiped of the edge's vertex face. Rectangular parallelepiped. Pyramid

A rectangular parallelepiped of the edge's vertex face. Rectangular parallelepiped. Pyramid

A parallelepiped is a prism whose bases are parallelograms. In this case, all edges will be parallelograms.
Each parallelepiped can be considered as a prism with three different ways, since every two opposite faces can be taken as bases (in Figure 5, faces ABCD and A"B"C"D", or ABA"B" and CDC"D", or VSV"C" and ADA"D") .
The body in question has twelve edges, four equal and parallel to each other.
Theorem 3 . The diagonals of a parallelepiped intersect at one point, coinciding with the middle of each of them.
The parallelepiped ABCDA"B"C"D" (Fig. 5) has four diagonals AC", BD", CA", DB". We must prove that the midpoints of any two of them, for example AC and BD", coincide. This follows from the fact that the figure ABC"D", having equal and parallel sides AB and C"D", is a parallelogram.
Definition 7 . A right parallelepiped is a parallelepiped that is also a straight prism, that is, a parallelepiped whose side edges are perpendicular to the plane of the base.
Definition 8 . A rectangular parallelepiped is a right parallelepiped whose base is a rectangle. In this case, all its faces will be rectangles.
Rectangular parallelepiped represents a straight prism, no matter which of its faces we take as the base, since each of its edges is perpendicular to the edges emerging from the same vertex, and will, therefore, be perpendicular to the planes of the faces defined by these edges. In contrast, a straight, but not rectangular, parallelepiped can be viewed as a right prism in only one way.
Definition 9 . The lengths of three edges of a rectangular parallelepiped, of which no two are parallel to each other (for example, three edges emerging from the same vertex), are called its dimensions. Two rectangular parallelepipeds having correspondingly equal dimensions are obviously equal to each other.
Definition 10 .A cube is a rectangular parallelepiped, all three dimensions of which are equal to each other, so that all its faces are squares. Two cubes whose edges are equal are equal.
Definition 11 . Inclined parallelepiped, in which all edges are equal to each other and the angles of all faces are equal or complementary, is called a rhombohedron.
All faces of a rhombohedron are equal rhombuses. (Some crystals have a rhombohedron shape, having great importance, for example, Iceland spar crystals.) In a rhombohedron you can find a vertex (and even two opposite vertices) such that all angles adjacent to it are equal to each other.
Theorem 4 . The diagonals of a rectangular parallelepiped are equal to each other. The square of the diagonal is equal to the sum of the squares of the three dimensions.
In the rectangular parallelepiped ABCDA"B"C"D" (Fig. 6), the diagonals AC" and BD" are equal, since the quadrilateral ABC"D" is a rectangle (the straight line AB is perpendicular to the plane ECB"C", in which BC lies") .
In addition, AC" 2 =BD" 2 = AB2+AD" 2 based on the theorem about the square of the hypotenuse. But based on the same theorem AD" 2 = AA" 2 + +A"D" 2; hence we have:
AC" 2 = AB 2 + AA" 2 + A" D" 2 = AB 2 + AA" 2 + AD 2.

It will be useful for high school students to learn how to solve Unified State Examination problems to find the volume and other unknown parameters of a rectangular parallelepiped. The experience of previous years confirms the fact that such tasks are quite difficult for many graduates.

At the same time, high school students with any level of training should understand how to find the volume or area of ​​a rectangular parallelepiped. Only in this case will they be able to count on receiving competitive scores based on the results of passing the unified state exam in mathematics.

Key points to remember

  • The parallelograms that make up a parallelepiped are its faces, their sides are its edges. The vertices of these figures are considered the vertices of the polyhedron itself.
  • All diagonals of a rectangular parallelepiped are equal. Since this is a straight polyhedron, then side faces are rectangles.
  • Since a parallelepiped is a prism with a parallelogram at its base, this figure has all the properties of a prism.
  • The lateral edges of a rectangular parallelepiped are perpendicular to the base. Therefore, they are its heights.

Get ready for the Unified State Exam with Shkolkovo!

To make your classes easy and as effective as possible, choose our math portal. Here you will find all required material, which will be required at the stage of preparation for the unified state exam.

Specialists of the Shkolkovo educational project propose to go from simple to complex: first we give theory, basic formulas and elementary problems with solutions, and then gradually move on to expert-level tasks. You can practice with, for example, .

You will find the necessary basic information in the “Theoretical Information” section. You can also immediately start solving problems on the topic “Rectangular parallelepiped” online. The "Catalog" section presents large selection exercises varying degrees difficulties. The task database is regularly updated.

See if you can easily find the volume of a rectangular parallelepiped right now. Analyze any task. If the exercise is easy for you, move on to more complex tasks. And if certain difficulties arise, we recommend that you plan your day in such a way that your schedule includes classes with the Shkolkovo remote portal.

Definition

Polyhedron we will call a closed surface composed of polygons and bounding a certain part of space.

The segments that are the sides of these polygons are called ribs polyhedron, and the polygons themselves are edges. The vertices of polygons are called polyhedron vertices.

We will consider only convex polyhedra (this is a polyhedron that is located on one side of each plane containing its face).

The polygons that make up a polyhedron form its surface. The part of space that is bounded by a given polyhedron is called its interior.

Definition: prism

Consider two equal polygons \(A_1A_2A_3...A_n\) and \(B_1B_2B_3...B_n\) located in parallel planes so that the segments \(A_1B_1, \A_2B_2, ..., A_nB_n\) parallel. A polyhedron formed by the polygons \(A_1A_2A_3...A_n\) and \(B_1B_2B_3...B_n\) , as well as parallelograms \(A_1B_1B_2A_2, \A_2B_2B_3A_3, ...\), is called (\(n\)-gonal) prism.

Polygons \(A_1A_2A_3...A_n\) and \(B_1B_2B_3...B_n\) are called prism bases, parallelograms \(A_1B_1B_2A_2, \A_2B_2B_3A_3, ...\)– side faces, segments \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\)- lateral ribs.
Thus, the lateral edges of the prism are parallel and equal to each other.

Let's look at an example - a prism \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\), at the base of which lies a convex pentagon.

Height prisms are a perpendicular dropped from any point of one base to the plane of another base.

If the side edges are not perpendicular to the base, then such a prism is called inclined(Fig. 1), otherwise – straight. In a straight prism, the side edges are heights, and the side faces are equal rectangles.

If a regular polygon lies at the base of a straight prism, then the prism is called correct.

Definition: concept of volume

The unit of volume measurement is a unit cube (a cube measuring \(1\times1\times1\) units\(^3\), where unit is a certain unit of measurement).

We can say that the volume of a polyhedron is the amount of space that this polyhedron limits. Otherwise: this is a quantity whose numerical value shows how many times a unit cube and its parts fit into a given polyhedron.

Volume has the same properties as area:

1. The volumes of equal figures are equal.

2. If a polyhedron is composed of several non-intersecting polyhedra, then its volume is equal to the sum of the volumes of these polyhedra.

3. Volume is a non-negative quantity.

4. Volume is measured in cm\(^3\) (cubic centimeters), m\(^3\) ( Cubic Meters) etc.

Theorem

1. The area of ​​the lateral surface of the prism is equal to the product of the perimeter of the base and the height of the prism.
The lateral surface area is the sum of the areas of the lateral faces of the prism.

2. Prism volume equal to the product base area per prism height: \

Definition: parallelepiped

Parallelepiped is a prism with a parallelogram at its base.

All faces of the parallelepiped (there are \(6\) : \(4\) side faces and \(2\) bases) are parallelograms, and the opposite faces (parallel to each other) are equal parallelograms (Fig. 2).


Diagonal of a parallelepiped is a segment connecting two vertices of a parallelepiped that do not lie on the same face (there are \(8\) of them: \(AC_1,\A_1C,\BD_1,\B_1D\) etc.).

Rectangular parallelepiped is a right parallelepiped with a rectangle at its base.
Because Since this is a right parallelepiped, the side faces are rectangles. This means that in general all the faces of a rectangular parallelepiped are rectangles.

All diagonals of a rectangular parallelepiped are equal (this follows from the equality of triangles \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) etc.).

Comment

Thus, a parallelepiped has all the properties of a prism.

Theorem

The lateral surface area of ​​a rectangular parallelepiped is \

Square full surface rectangular parallelepiped is equal to \

Theorem

The volume of a cuboid is equal to the product of its three edges emerging from one vertex (three dimensions of the cuboid): \


Proof

Because In a rectangular parallelepiped, the lateral edges are perpendicular to the base, then they are also its heights, that is, \(h=AA_1=c\) Because the base is a rectangle, then \(S_(\text(main))=AB\cdot AD=ab\). This is where this formula comes from.

Theorem

The diagonal \(d\) of a rectangular parallelepiped is found using the formula (where \(a,b,c\) are the dimensions of the parallelepiped) \

Proof

Let's look at Fig. 3. Because the base is a rectangle, then \(\triangle ABD\) is rectangular, therefore, by the Pythagorean theorem \(BD^2=AB^2+AD^2=a^2+b^2\) .

Because all lateral edges are perpendicular to the bases, then \(BB_1\perp (ABC) \Rightarrow BB_1\) perpendicular to any straight line in this plane, i.e. \(BB_1\perp BD\) . This means that \(\triangle BB_1D\) is rectangular. Then, by the Pythagorean theorem \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\), thd.

Definition: cube

Cube is a rectangular parallelepiped, all of whose faces are equal squares.


Thus, the three dimensions are equal to each other: \(a=b=c\) . So the following are true

Theorems

1. The volume of a cube with edge \(a\) is equal to \(V_(\text(cube))=a^3\) .

2. The diagonal of the cube is found using the formula \(d=a\sqrt3\) .

3. Total surface area of ​​a cube \(S_(\text(full cube))=6a^2\).

In geometry, the key concepts are plane, point, straight line and angle. Using these terms, you can describe any geometric figure. Polyhedra are usually described in terms of more simple figures, which lie in the same plane, such as a circle, triangle, square, rectangle, etc. In this article we will look at what a parallelepiped is, describe the types of parallelepipeds, its properties, what elements it consists of, and also give the basic formulas for calculating the area and volume for each type of parallelepiped.

Definition

A parallelepiped in three-dimensional space is a prism, all sides of which are parallelograms. Accordingly, it can only have three pairs of parallel parallelograms or six faces.

To visualize a parallelepiped, imagine an ordinary standard brick. Brick - good example a rectangular parallelepiped that even a child can imagine. Other examples include multi-storey panel houses, cabinets, storage containers food products appropriate form, etc.

Varieties of figure

There are only two types of parallelepipeds:

  1. Rectangular, all side faces of which are at an angle of 90° to the base and are rectangles.
  2. Sloping, the side edges of which are located at a certain angle to the base.

What elements can this figure be divided into?

  • Just like any other geometric figure, in a parallelepiped, any 2 faces with a common edge are called adjacent, and those that do not have it are parallel (based on the property of a parallelogram, which has pairs of parallel opposite sides).
  • The vertices of a parallelepiped that do not lie on the same face are called opposite.
  • The segment connecting such vertices is a diagonal.
  • The lengths of the three edges of a cuboid that meet at one vertex are its dimensions (namely, its length, width and height).

Shape Properties

  1. It is always built symmetrically with respect to the middle of the diagonal.
  2. The intersection point of all diagonals divides each diagonal into two equal segments.
  3. Opposite faces are equal in length and lie on parallel lines.
  4. If you add the squares of all dimensions of a parallelepiped, the resulting value will be equal to the square of the length of the diagonal.

Calculation formulas

The formulas for each particular case of a parallelepiped will be different.

For an arbitrary parallelepiped, it is true that its volume is equal to the absolute value of the triple scalar product of the vectors of three sides emanating from one vertex. However, there is no formula for calculating the volume of an arbitrary parallelepiped.

For a rectangular parallelepiped the following formulas apply:

  • V=a*b*c;
  • Sb=2*c*(a+b);
  • Sp=2*(a*b+b*c+a*c).
  • V is the volume of the figure;
  • Sb - lateral surface area;
  • Sp - total surface area;
  • a - length;
  • b - width;
  • c - height.

Another special case of a parallelepiped in which all sides are squares is a cube. If any of the sides of the square is designated by the letter a, then the following formulas can be used for the surface area and volume of this figure:

  • S=6*a*2;
  • V=3*a.

The last type of parallelepiped we are considering is a straight parallelepiped. What is the difference between a right parallelepiped and a cuboid, you ask. The fact is that the base of a rectangular parallelepiped can be any parallelogram, but the base of a straight parallelepiped can only be a rectangle. If we mark the perimeter of the base, equal to the sum lengths of all sides as Po, and the height is designated by the letter h, we have the right to use the following formulas to calculate the volume and areas of the full and lateral surfaces.

In the fifth century BC ancient Greek philosopher Zeno of Elea formulated his famous aporias, the most famous of which is the aporia “Achilles and the Tortoise.” Here's what it sounds like:

Let's say Achilles runs ten times faster than the tortoise and is a thousand steps behind it. During the time it takes Achilles to run this distance, the tortoise will crawl a hundred steps in the same direction. When Achilles runs a hundred steps, the tortoise crawls another ten steps, and so on. The process will continue ad infinitum, Achilles will never catch up with the tortoise.

This reasoning became a logical shock for all subsequent generations. Aristotle, Diogenes, Kant, Hegel, Hilbert... They all considered Zeno's aporia in one way or another. The shock was so strong that " ...discussions continue to this day, to reach a common opinion about the essence of paradoxes scientific community so far it has not been possible... mathematical analysis, set theory, new physical and philosophical approaches were involved in the study of the issue; none of them became a generally accepted solution to the problem..."[Wikipedia, "Zeno's Aporia". Everyone understands that they are being fooled, but no one understands what the deception consists of.

From a mathematical point of view, Zeno in his aporia clearly demonstrated the transition from quantity to . This transition implies application instead of permanent ones. As far as I understand, the mathematical apparatus for using variable units of measurement has either not yet been developed, or it has not been applied to Zeno’s aporia. Applying our usual logic leads us into a trap. We, due to the inertia of thinking, apply constant units of time to the reciprocal value. From a physical point of view, this looks like time slowing down until it stops completely at the moment when Achilles catches up with the turtle. If time stops, Achilles can no longer outrun the tortoise.

If we turn our usual logic around, everything falls into place. Achilles runs at a constant speed. Each subsequent segment of his path is ten times shorter than the previous one. Accordingly, the time spent on overcoming it is ten times less than the previous one. If we apply the concept of “infinity” in this situation, then it would be correct to say “Achilles will catch up with the turtle infinitely quickly.”

How to avoid this logical trap? Remain in constant units of time and do not switch to reciprocal units. In Zeno's language it looks like this:

In the time it takes Achilles to run a thousand steps, the tortoise will crawl a hundred steps in the same direction. During the next time interval equal to the first, Achilles will run another thousand steps, and the tortoise will crawl a hundred steps. Now Achilles is eight hundred steps ahead of the tortoise.

This approach adequately describes reality without any logical paradoxes. But this is not a complete solution to the problem. Einstein’s statement about the irresistibility of the speed of light is very similar to Zeno’s aporia “Achilles and the Tortoise”. We still have to study, rethink and solve this problem. And the solution must be sought not in infinitely large numbers, but in units of measurement.

Another interesting aporia of Zeno tells about a flying arrow:

A flying arrow is motionless, since at every moment of time it is at rest, and since it is at rest at every moment of time, it is always at rest.

In this aporia, the logical paradox is overcome very simply - it is enough to clarify that at each moment of time a flying arrow is at rest at different points in space, which, in fact, is motion. Another point needs to be noted here. From one photograph of a car on the road it is impossible to determine either the fact of its movement or the distance to it. To determine whether a car is moving, you need two photographs taken from the same point at different points in time, but you cannot determine the distance from them. To determine the distance to a car, you need two photographs taken from different points in space at one point in time, but from them you cannot determine the fact of movement (of course, you still need additional data for calculations, trigonometry will help you). What I want to point out Special attention, is that two points in time and two points in space are different things that should not be confused, because they provide different opportunities for research.

Wednesday, July 4, 2018

The differences between set and multiset are described very well on Wikipedia. Let's see.

As you can see, “there cannot be two identical elements in a set,” but if there are identical elements in a set, such a set is called a “multiset.” Reasonable beings will never understand such absurd logic. This is the level of talking parrots and trained monkeys, who have no intelligence from the word “completely”. Mathematicians act as ordinary trainers, preaching to us their absurd ideas.

Once upon a time, the engineers who built the bridge were in a boat under the bridge while testing the bridge. If the bridge collapsed, the mediocre engineer died under the rubble of his creation. If the bridge could withstand the load, the talented engineer built other bridges.

No matter how mathematicians hide behind the phrase “mind me, I’m in the house,” or rather, “mathematics studies abstract concepts,” there is one umbilical cord that inextricably connects them with reality. This umbilical cord is money. Applicable mathematical theory sets to the mathematicians themselves.

We studied mathematics very well and now we are sitting at the cash register, giving out salaries. So a mathematician comes to us for his money. We count out the entire amount to him and lay it out on our table in different piles, into which we put bills of the same denomination. Then we take one bill from each pile and give the mathematician his “mathematical set of salary.” Let us explain to the mathematician that he will receive the remaining bills only when he proves that a set without identical elements is not equal to a set with identical elements. This is where the fun begins.

First of all, the logic of the deputies will work: “This can be applied to others, but not to me!” Then they will begin to reassure us that bills of the same denomination have different bill numbers, which means they cannot be considered the same elements. Okay, let's count salaries in coins - there are no numbers on the coins. Here the mathematician will begin to frantically remember physics: on different coins there is different quantities mud, crystal structure and the arrangement of atoms in each coin is unique...

And now I have the most interest Ask: where is the line beyond which the elements of a multiset turn into elements of a set and vice versa? Such a line does not exist - everything is decided by shamans, science is not even close to lying here.

Look here. We select football stadiums with the same field area. The areas of the fields are the same - which means we have a multiset. But if we look at the names of these same stadiums, we get many, because the names are different. As you can see, the same set of elements is both a set and a multiset. Which is correct? And here the mathematician-shaman-sharpist pulls out an ace of trumps from his sleeve and begins to tell us either about a set or a multiset. In any case, he will convince us that he is right.

To understand how modern shamans operate with set theory, tying it to reality, it is enough to answer one question: how do the elements of one set differ from the elements of another set? I'll show you, without any "conceivable as not a single whole" or "not conceivable as a single whole."

Sunday, March 18, 2018

The sum of the digits of a number is a dance of shamans with a tambourine, which has nothing to do with mathematics. Yes, in mathematics lessons we are taught to find the sum of the digits of a number and use it, but that’s why they are shamans, to teach their descendants their skills and wisdom, otherwise shamans will simply die out.

Do you need proof? Open Wikipedia and try to find the page "Sum of digits of a number." She doesn't exist. There is no formula in mathematics that can be used to find the sum of the digits of any number. After all, numbers are graphic symbols with which we write numbers, and in the language of mathematics the task sounds like this: “Find the sum of graphic symbols representing any number.” Mathematicians cannot solve this problem, but shamans can do it easily.

Let's figure out what and how we do in order to find the sum of the digits of a given number. And so, let us have the number 12345. What needs to be done in order to find the sum of the digits of this number? Let's consider all the steps in order.

1. Write down the number on a piece of paper. What have we done? We have converted the number into a graphical number symbol. This is not a mathematical operation.

2. We cut one resulting picture into several pictures containing individual numbers. Cutting a picture is not a mathematical operation.

3. Convert individual graphic symbols into numbers. This is not a mathematical operation.

4. Add the resulting numbers. Now this is mathematics.

The sum of the digits of the number 12345 is 15. These are the “cutting and sewing courses” taught by shamans that mathematicians use. But that is not all.

From a mathematical point of view, it does not matter in which number system we write a number. So, in different systems In calculus, the sum of the digits of the same number will be different. In mathematics, the number system is indicated as a subscript to the right of the number. WITH a large number 12345 I don’t want to fool my head, let’s look at the number 26 from the article about . Let's write this number in binary, octal, decimal and hexadecimal number systems. We won't look at every step under a microscope; we've already done that. Let's look at the result.

As you can see, in different number systems the sum of the digits of the same number is different. This result has nothing to do with mathematics. It’s the same as if you determined the area of ​​a rectangle in meters and centimeters, you would get completely different results.

Zero looks the same in all number systems and has no sum of digits. This is another argument in favor of the fact that. Question for mathematicians: how is something that is not a number designated in mathematics? What, for mathematicians nothing exists except numbers? I can allow this for shamans, but not for scientists. Reality is not just about numbers.

The result obtained should be considered as proof that number systems are units of measurement for numbers. After all, we cannot compare numbers with different units measurements. If the same actions with different units of measurement of the same quantity lead to different results after comparing them, it means it has nothing to do with mathematics.

What is real mathematics? This is when the result of a mathematical operation does not depend on the size of the number, the unit of measurement used and on who performs this action.

Sign on the door He opens the door and says:

Oh! Isn't this the women's restroom?
- Young woman! This is a laboratory for the study of the indephilic holiness of souls during their ascension to heaven! Halo on top and arrow up. What other toilet?

Female... The halo on top and the arrow down are male.

If such a work of design art flashes before your eyes several times a day,

Then it’s not surprising that you suddenly find a strange icon in your car:

Personally, I make an effort to see minus four degrees in a pooping person (one picture) (a composition of several pictures: a minus sign, the number four, a designation of degrees). And I don’t think this girl is a fool who doesn’t know physics. She just has an arch stereotype of perception graphic images. And mathematicians teach us this all the time. Here's an example.

1A is not “minus four degrees” or “one a”. This is "pooping man" or the number "twenty-six" in hexadecimal notation. Those people who constantly work in this number system automatically perceive a number and a letter as one graphic symbol.