Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Тело не действуют другие тела. Почему если тело движется с ускорением вверх, то вес тела увеличивается, а если вниз то уменьшается? Явление тяготения. Сила тяжести

Тело не действуют другие тела. Почему если тело движется с ускорением вверх, то вес тела увеличивается, а если вниз то уменьшается? Явление тяготения. Сила тяжести

«) примерно в V в. до н. э. Видимо, одним из первых объектов ее исследования была механе-подъёмная машина, применявшаяся в театре для подъема и опускания актеров, изображавших богов. Отсюда и произошло название науки.

Люди уже давно заметили, что они живут в мире Движущихся предметов - качаются деревья, летят птицы, плывут корабли, поражают цели стрелы, выпущенные из лука. Причины подобных загадочных тогда явлений занимали умы древних и средневековых ученых.

В 1638 г. Галилео Галилей писал: «В природе нет ничего древнее движения, и о нем философы написали томов немало и немалых». Древние и особенно ученые средневековья и эпохи Возрождения ( , Н. Коперник, Г. Галилей, И. Кеплер, Р. Декарт и др.) уже правильно толковали отдельные вопросы движения, однако в целом ясного понимания законов движения во времена Галилея не было.

Учение о движении тел впервые предстает как строгая, последовательная наука, построенная, как и геометрия Евклида, на истинах, не требующих доказательств (аксиомах), в фундаментальном труде Исаака Ньютона «Математические начала натуральной философии», изданном в 1687 г. Оценивая вклад в науку ученых-предшественников, великий Ньютон сказал: «Если мы видели дальше других, то это потому, что стояли на плечах гигантов».

Движения вообще, движения, безотносительного к чему-либо, нет и быть не может. Движение тел может происходить только относительно других тел и связанных с ними пространств. Поэтому в начале своего труда Ньютон решает принципиально важный вопрос о пространстве, относительно которого будет изучаться движение тел.

Чтобы придать конкретность этому пространству, Ньютон связывает с ним систему координат, состоящую из трех взаимно перпендикулярных осей.

Ньютон вводит понятие абсолютное пространство, которое определяет так: «Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным». Определение пространства как неподвижного тождественно предположению о существовании абсолютно неподвижной системы координат, относительно которой рассматривается движение материальных точек и твердых тел.

В качестве такой системы координат Ньютон принимал гелиоцентрическую систему , начало которой он помещал в центр , а три воображаемых взаимно перпендикулярных оси направлял к трем «неподвижным» звездам. Но сегодня известно, что в мире нет ничего абсолютно неподвижного - вращается вокруг своей оси и вокруг Солнца, Солнце движется относительно центра Галактики, Галактика - относительно центра мира и т. д.

Таким образом, если говорить строго, то абсолютно неподвижной системы координат не существует. Однако движение «неподвижных» звезд относительно Земли настолько медленное, что для большинства задач, решаемых людьми на Земле, этим движением можно пренебречь и считать «неподвижные» звезды действительно неподвижными, а абсолютно неподвижную систему координат, предложенную Ньютоном, действительно существующей.

По отношению к абсолютно неподвижной системе координат Ньютон сформулировал свой первый закон (аксиому): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными изменять это состояние».

С тех пор предпринимались и предпринимаются попытки редакционно улучшить формулировку Ньютона. Один из вариантов формулировок звучит так: «Тело, движущееся в пространстве, стремится сохранить величину и направление своей скорости» (имеется в виду, что покой - это движение со скоростью, равной нулю). Здесь уже вводится понятие одной из важнейших характеристик движения - поступательной, или линейной, скорости. Обычно линейная скорость обозначается V.

Обратим внимание на то, что в первом законе Ньютона говорится только о поступательном (прямолинейном) движении. Однако всем известно, что в мире существует и другое, более сложное движение тел - криволинейное, но о нем позже…

Стремление тел «удерживаться в своем состоянии» и «сохранять величину и направление своей скорости» называется инертностью , или инерцией , тел. Слово «инерция» латинское, в переводе на русский оно означает «покой», «бездействие». Интересно отметить, что инерция - органическое свойство материи вообще, «врожденная сила материи», как говорил Ньютон. Она свойственна не только механическому движению, но и другим явлениям природы, например электрическим, магнитным, тепловым. Инерция проявляется и в жизни общества, и в поведении отдельных людей. Но вернемся к механике.

Мерой инерции тела при его поступательном движении является масса тела, обозначаемая обычно m. Установлено, что при поступательном движении на величину инерции не влияет распределение массы внутри объема, занимаемого телом. Это дает основание при решении многих задач механики отвлечься от конкретных размеров тела и заменить его материальной точкой, масса которой равна массе тела.

Местоположение этой условной точки в объеме, занимаемом телом, называется центром масс тела , или, что почти то же самое, но более знакомо, центром тяжести .

Мерой механического прямолинейного движения, предложенной еще Р. Декартом в 1644 г., является количество движения, определяемое как произведение массы тела на его линейную скорость: mV.

Как правило, движущиеся тела не могут продолжительное время сохранять неизменным величину количества своего движения: расходуются в полете запасы топлива, уменьшая массу летательных аппаратов, тормозят и разгоняются поезда, изменяя свою скорость. Какая же причина вызывает изменение количества движения? Ответ па этот вопрос дает второй закон (аксиома) Ньютона, который в современной формулировке звучит так: скорость изменения количества движения материальной точки равна силе, действующей на эту точку.

Итак, причиной, вызывающей движение тел (если вначале mV=0) или изменяющей их количество движения (если вначале mV не равно О) относительно абсолютного пространства (других пространств Ньютон не рассматривал), являются силы. Эти силы позже получили уточняющие названия - физические , или Ньютоновы , силы. Они обычно обозначаются F.

Сам Ньютон дал следующее определение физическим силам: «Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения». Существует много других определений силы. Л. Купер и Э. Роджерс - авторы замечательных популярных книг по физике, избегая скучноватых строгих определений силы, с известной долей лукавства вводят свое определение: «Силы - это то, что тянет и толкает». До конца не ясно, но какое-то представление о том, что такое сила, появляется.

К физическим силам относятся: силы , магнитные (см. статью « «), силы упругости и пластичности, силы сопротивления среды, света и многие другие.

Если во время движения тела его масса не меняется (только этот случай будет рассматриваться в дальнейшем), то формулировка второго закона Ньютона значительно упрощается: «Действующая на материальную точку сила равна произведению массы точки на изменение ее скорости».

Изменение линейной скорости тела или точки (по величине или направлению - запомним это) называется линейным ускорением тела или точки и обозначается обычно а.

Ускорения и скорости, с которыми тела движутся относительно абсолютного пространства, называются абсолютными ускорениями и скоростями .

Кроме абсолютной системы координат, можно представить себе (конечно, с какими-то допущениями) другие системы координат, которые движутся относительно абсолютной прямолинейно и равномерно. Поскольку (согласно первому закону Ньютона) покой и равномерное прямолинейное движение эквивалентны, то в таких системах справедливы законы Ньютона, в частности первый закон - закон инерции . По этой причине системы координат, движущиеся равномерно и прямолинейно относительно абсолютной системы, получили название инерциальных систем координат .

Однако в большинстве практических задач людей интересует движение тел не относительно далекого и неосязаемого абсолютного пространства и даже не относительно инерциальных пространств, а относительно других более близких и вполне материальных тел, например пассажира относительно кузова автомобиля. Но эти другие тела (и связанные с ними пространства и системы координат) сами движутся относительно абсолютного пространства непрямолинейно и неравномерно. Системы координат, связанные с такими телами, получили название подвижных . Впервые подвижные системы координат использовал для решения сложных задач механики Л. Эйлер (1707-1783).

С примерами движения тел относительно других подвижных тел мы постоянно встречаемся в нашей жизни. Плывут по морям и океанам корабли, перемещаясь относительно поверхности Земли, вращающейся в абсолютном пространстве; движется относительно стен мчащегося пассажирского вагона проводник, разносящий чай по купе; выплескивается чай из стакана при резких толчках вагона и т. д.

Для описания и изучения столь сложных явлений вводятся понятия переносного движения и относительного движения и соответствующих им переносных и относительных скоростей и ускорений.

В первом из приведенных примеров вращение Земли относительно абсолютного пространства будет переносным движением, а перемещение корабля относительно поверхности Земли - относительным движением.

Чтобы изучить движение проводника относительно стен вагона, нужно прежде принять, что вращение Земли существенного влияния на движение проводника не оказывает и поэтому Землю в данной задаче можно считать неподвижной. Тогда движение пассажирского вагона - движение переносное , а движение проводника относительно вагона — движение относительное . При относительном движении тела воздействуют друг на друга или непосредственно (соприкасаясь), или на расстоянии (например, магнитные и гравитационные взаимодействия).

Характер этих воздействий определяется третьим законом (аксиомой) Ньютона. Если вспомнить, что физические силы, приложенные к телам, Ньютон назвал действием, то третий закон может быть сформулирован так: «Действие равно противодействию». Следует отметить, что действие приложено к одному, а противодействие - к другому из двух взаимодействующих тел. Действие и противодействие не уравновешиваются, а вызывают ускорения взаимодействущих тел, причем с большим ускорением движется то тело, масса которого меньше.

Напомним также, что третий закон Ньютона в отличие от первых двух справедлив в любой системе координат, а не только в абсолютной или инерциальных.

Кроме прямолинейного движения, в природе широко распространено криволинейное движение, простейшим случаем которого является движение по окружности. Только этот случай мы и будем рассматривать в дальнейшем, называя движение по окружности круговым движением. Примеры кругового движения: вращение Земли вокруг своей оси, движение дверей и качелей, вращение бесчисленных колес.

Круговое движение тел и материальных точек может происходить либо вокруг осей, либо вокруг точек.

Круговое движение (так же, как и прямолинейное) может быть абсолютным, переносным и относительным.

Как и прямолинейное, круговое движение характеризуется скоростью, ускорением, силовым фактором, мерой инерции, мерой движения. Количественно все эти характеристики в очень сильной степени зависят от того, на каком расстоянии от оси вращения находится вращающаяся материальная точка. Это расстояние называется радиусом вращения и обозначается r .

В гироскопической технике момент количества движения принято называть кинетическим моментом и выражать его через характеристики кругового движения. Таким образом, кинетический момент есть произведение момента инерции тела (относительно оси вращения) на его угловую скорость.

Естественно, законы Ньютона справедливы и для кругового движения. В применении к круговому движению эти законы несколько упрощенно могли бы быть сформулированы так.

  • Первый закон: вращающееся тело стремится сохранить относительно абсолютного пространства величину и направление своего момента количества движения (т. е. величину и направление своего кинетического момента).
  • Второй закон: изменение во времени момента количества движения (кинетического момента) равно приложенному моменту сил.
  • Третий закон: момент действия равен моменту противодействия.

Основы динамики

Если кинематика это раздел механики, в котором описываются и изучаются движения без исследования причин, их вызывающих, то динамика рассматривает движение с другой стороны.

Динамика – раздел механики, в котором выясняются причины, по которым может меняться характер движения тел.

В основе классической динамики лежат три закона Ньютона.

Любое материальное тело испытывает воздействие со стороны окружающих его тел. В то же время оно само воздействует на окружающие его тела. Иными словами тела взаимодействуют между собой.

Количественной мерой взаимодействия является сила.

Сила – векторная величина. Чтобы определить силу, надо указать ее величину, направление действия, тело, к которому сила приложена и точку приложения.

Все тела обладают свойством инертности.

Инертность состоит в способности тел сохранять состояние покоя или равномерного прямолинейного движения (сохранять неизменной скорость, которой они обладают).

Инертность различных тел различна.

Количественной мерой инертности является масса тела.

Единицей измерения массы является килограмм . Это основная единица, представленная массой международного прототипа килограмма (эталоном).

Наблюдения и опыт показывают, что скорость любого тела изменяется только при действии на него других тел (при действии силы). Неизменность скорости возможно только при условии, что ускорение равно нулю.

Галилеем на рубеже XVI-XVII века был установлен закон:

Если на тело не действуют никакие другие тела, то тело сохраняет состояние покоя или прямолинейного равномерного движения.

В конце XVII века Ньютон включил его в свои законы механики в качестве первого закона , назвав его законом инерции .

Закон инерции гласит:

Если на тело не действуют другие тела, то оно находится в состоянии покоя или равномерного прямолинейного движения, относительно инерциальной системы отсчета.

Из этого закона следует, что причиной изменения скорости является сила .

Второй закон Ньютона отвечает на вопрос о том, как движется тело под действием силы. Поскольку скорость может меняться только при наличии ускорения, а причиной изменения является сила, то сила является причиной возникновения ускорения.

Закон гласит:

Ускорение, приобретаемое материальной точкой (телом) в инерциальной системе отсчета, пропорционально действующей на точку силе, обратно пропорционально массе материальной точки и по направлению совпадает с силой.

Единица измерения силы – ньютон (Н) :

В первом и втором законах рассматривается только одно тело. Но силы возникает только при наличии двух взаимодействующих тел, и являются мерой этого взаимодействия.

Третий закон рассматривает оба взаимодействующих тела.

Закон гласит:

Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны вдоль прямой, соединяющей эти тела .

при непосредственном соприкосновении . Оно в таком случае сопровождается изменением формы и объема взаимодействующих тел – деформациями . Возникающие при этом силы, называются силами упругости .

Взаимодействие может осуществляться на расстоянии . В таком случае говорят о наличии силового поля . Одним из таких полей является поле тяготения, а возникающие в нем силы называются силами тяжести.

При непосредственном соприкосновении тел кроме сил упругости возникают силы другого типа, называемые силами трения . Они характерны тем, что препятствуют движению одного трущегося тела относительно другого или препятствуют самому возникновению этого движения.

Сила тяжести , к действию которой в земных условиях мы привыкли, обусловлена притяжением (действием поля тяготения) Земли. Количественно ее определяют по формуле:

g – ускорение свободного падения;

m – масса рассматриваемого тела;

То, что для всех тел, на которые действуют только силы тяжести, возникающее при этом ускорение одинаково и равно g , установил Галилей.

Сила тяжести приложена к центру масс тела и направлена вниз по отвесной линии.

Силы упругости возникают в результате взаимодействия тел, которые при этом деформируются.

Установлено, что упругая сила пропорциональна смещению частиц из положения равновесия, происходящему при деформировании тела, и направлена к положению равновесия.

Первым установил эту зависимость современник Ньютона Роберт Гук и известна в физике как закон Гука.

х – величина упругой информации;

k – жесткость тела;

Жесткость имеет размерность [Н/м] . Она зависит не только от материала тела, но и от формы, которую это тело имеет.


Сила трения скольжения препятствует движению одного трущегося тела относительно другого и действует, когда такое движение (скольжение) происходит. Она направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого и зависит от состояния трущихся поверхностей и прижимающего давления.



– коэффициент трения скольжения, зависящий от природы и состояния соприкасающихся тел, который не имеет размерности;

N – сила нормального давления, прижимающая трущиеся поверхности друг к другу;

Сила трения покоя. Для того, чтобы одно трущееся тело начало двигаться относительно другого, необходимо приложить некоторое усилие. Если усилие будет меньше требуемого, движение не начнется. Это означает, что приложенное усилие компенсируется какой-то силой. Это сила трения покоя .

Сила трения покоя возникает при появлении силы, стремящейся вызвать скольжение одного тела по другому.

Сила трения покоя равна по величине и противоположна по направлению внешней силе.

Сила трения покоя увеличивается с ростом внешней силы до определенного предела, после достижения которого начинается скольжение.

Предельная сила трения покоя во многих случаях превышает силу трения скольжения.

Сила трения качения. Если тело имеет форму, которая позволяет его катить по поверхности другого тела, то возникает сила трения качения.

Сила трения качения меньше силы трения скольжения.

Возникновения трения качения обусловлено деформацией поверхностей обоих тел из-за чего катящееся тело как бы вкатывается на горку. В то же время происходит отрыв ранее находившихся в контакте участков одной поверхности от другой.

Это векторная сумма всех сил, действующих на тело.


Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Взаимосвязь со вторым законом Ньютона

Вспомним закон Ньютона:

Равнодействующая сила может быть равна нулю в том случае, когда одна сила компенсируется другой, такой же силой, но противоположной по направлению. В этом случае тело находится в покое или движется равномерно.


Если равнодействующая сила НЕ равна нулю, то тело движется равноускоренно . Собственно именно эта сила является причиной неравномерного движения. Направление равнодействующей силы всегда совпадает по направлению с вектором ускорения.

Когда требуется изобразить силы, действующие на тело, при этом тело движется равноускоренно, значит в направлении ускорения действующая сила длиннее противоположной. Если тело движется равномерно или покоится длина векторов сил одинаковая.


Нахождение равнодействующей силы

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело; затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения. Кратко: 1) обозначить силы; 2) выбрать оси, их направления; 3) найти проекции сил на оси; 4) записать уравнения.

Как записать уравнения? Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Примеры

На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Обозначим силы, выберем координатные оси

Найдем проекции

Записываем уравнения

Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.



Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.



Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Блок - механическое устройство, колесо, вращающееся вокруг своей оси. Блоки могут быть подвижными и неподвижными.

Неподвижный блок используется лишь для изменения направления силы.

Тела, связанные нерастяжимой нитью, имеют одинаковые по величине ускорения.

Подвижный блок предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то для подъёма груза потребуется сила вдвое меньше, чем вес груза. Действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом.

Ускорение тела А в два раза меньше ускорения тела В.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст.



Как движется тело, если на него не действуют другие силы? Как движется тело, если на него не действуют другие силы? Тело движется равномерно прямолинейно. Меняется ли пари этом его скорость? Тело движется равномерно прямолинейно. Меняется ли пари этом его скорость? Как читается первый закон Ньютона? Как читается первый закон Ньютона? Инерциальна ли система отсчета, движущаяся с ускорением относительно инерциальной системы? Инерциальна ли система отсчета, движущаяся с ускорением относительно инерциальной системы? Что является причиной ускоренного движения тел Что является причиной ускоренного движения тел


Как читается второй закон Ньютона? Как читается второй закон Ньютона? Как читается третий закон Ньютона Как читается третий закон Ньютона Какие системы отсчета называют инерциальными? Какие системы отсчета называют инерциальными? Какие системы отсчета называют неинерциальными? Какие системы отсчета называют неинерциальными? Выразите единицу силы через единицу массы и ускорения. Выразите единицу силы через единицу массы и ускорения.


История о том, как «Лебедь, рак и щука везти с поклажей воз взялись» известна всем. История о том, как «Лебедь, рак и щука везти с поклажей воз взялись» известна всем. …Лебедь рвется в облака, …Лебедь рвется в облака, рак пятится назад, рак пятится назад, А щука тянет в воду. А щука тянет в воду. Обоснуйте несостоятельность этого утверждения с точки зрения классической механики. Обоснуйте несостоятельность этого утверждения с точки зрения классической механики.




Заполнить пропуски: Заполнить пропуски: По действием силы тело движется… По действием силы тело движется… Если при неизменной массе тела увеличить силу в 2 раза, то ускорение … в … раз. Если при неизменной массе тела увеличить силу в 2 раза, то ускорение … в … раз. Если массу тела уменьшить в 4 раза, а силу, действующую на тело, увеличить в 2 раза, то ускорение … в … раз. Если массу тела уменьшить в 4 раза, а силу, действующую на тело, увеличить в 2 раза, то ускорение … в … раз. Если силу увеличить в 3 раза, а массу …, то ускорение останется неизменным. Если силу увеличить в 3 раза, а массу …, то ускорение останется неизменным.


Даны графики зависимости проекции скорости и ускорения от времени для прямолинейного движения. Укажите, на каких участках действия окружающих тел скомпенсированы. Как направлена равнодействующая сила по отношению к направлению движения? Даны графики зависимости проекции скорости и ускорения от времени для прямолинейного движения. Укажите, на каких участках действия окружающих тел скомпенсированы. Как направлена равнодействующая сила по отношению к направлению движения? v a

Мы ощущаем это так, будто нас «вдавливает» в пол, или так, будто мы «зависаем» в воздухе. Лучше всего это можно ощутить при езде на американских горках или в лифтах высотных зданий, которые резко начинают подъём и спуск.

Пример:

Примеры увеличения веса:

Когда лифт резко начинает движение вверх, находящиеся в лифте люди испытывают ощущение, будто их «вдавливает» в пол.

Когда лифт резко уменьшает скорость движения вниз, тогда находящиеся в лифте люди из-за инерции сильнее «вжимаются» ногами в пол лифта.

Когда на американских горках проезжают через нижнюю точку горок, находящиеся в тележке люди испытывают ощущение, будто их «вдавливает» в сиденье.

Пример:

Примеры уменьшения веса:

При быстрой езде на велосипеде по небольшим пригоркам велосипедист на вершине пригорка испытывает ощущение лёгкости.

Когда лифт резко начинает движение вниз, находящиеся в лифте люди ощущают, что уменьшается их давление на пол, возникает ощущение свободного падения.

Когда на американских горках проезжают через высшую точку горок, находящиеся в тележке люди испытывают ощущение, будто их «подбрасывает» в воздух.

Когда на качелях раскачиваются до наивысшей точки, ощущается, что на короткий момент тело «зависает» в воздухе.

Изменение веса связано с инерцией - стремлением тела сохранять своё начальное состояние. Поэтому изменение веса всегда противоположно ускорению движения. Когда ускорение движения направлено вверх, вес тела увеличивается. А если ускорение движения направлено вниз, вес тела уменьшается.

На рисунке синими стрелками изображено направление ускорения движения.

1) Если лифт неподвижен или равномерно движется, то ускорение равно нулю. В этом случае вес человека нормальный, он равен силе тяжести и определяется так: P = m ⋅ g .

2) Если лифт движется ускоренно вверх или уменьшает свою скорость при движении вниз, то ускорение направлено вверх. В этом случае вес человека увеличивается и определяется так: P = m ⋅ g + a .

3) Если лифт движется ускоренно вниз или уменьшает свою скорость при движении вверх, то ускорение направлено вниз. В этом случае вес человека уменьшается и определяется так: P = m ⋅ g − a .

4) Если человек находится в объекте, который свободно падает, то ускорение движения направлено вниз и одинаково с ускорением свободного падения: \(a = g\) .

В этом случае вес человека равен нулю: P = 0 .

Пример:

Дано: масса человека - \(80 кг\). Человек входит в лифт, чтобы подняться наверх. Ускорение движения лифта составляет \(7\) м с 2 .

Каждый этап движения вместе с показаниями измерений приведён на рисунках ниже.

1) Лифт стоит на месте, и вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

2) Лифт начинает двигаться наверх с ускорением \(7\) м с 2 , и вес человека увеличивается: P = m ⋅ g + a = 80 ⋅ 9,8 + 7 = 1334 Н.

3) Лифт набрал скорость и едет равномерно, при этом вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

4) Лифт при движении вверх тормозит с отрицательным ускорением (замедлением) \(7\) м с 2 , и вес человека уменьшается: P = m ⋅ g − a = 80 ⋅ 9,8 − 7 = 224 Н.

5) Лифт полностью остановился, вес человека составляет: P = m ⋅ g = 80 ⋅ 9,8 = 784 Н.

В дополнение к картинкам и к примерам задания можно посмотреть видео с экспериментом, проведённым школьниками, в котором показано, как изменяется вес тела человека в лифте. Во время эксперимента школьники используют весы, в которых вес вместо килограммов сразу указывается в \(ньютонах, Н\). http://www.youtube.com/watch?v=D-GzuZjawNI .

Пример:

Состояние невесомости встречается в ситуациях, когда человек располагается в объекте, который находится в свободном падении. Есть специальные самолёты, которые предназначены для создания состояния невесомости. Они поднимаются на определённую высоту, и после этого самолёт переводится в свободное падение в течение примерно \(30 секунд\). Во время свободного падения самолёта находящиеся в нём люди ощущают состояние невесомости. Такую ситуацию можно посмотреть на этом видео.