Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Где расположен заряд в проводнике. Распределение зарядов на проводнике. Распределение заряда в заряженном проводнике

Где расположен заряд в проводнике. Распределение зарядов на проводнике. Распределение заряда в заряженном проводнике

Лекция 14. Проводники в электрическом поле.

Электроемкость проводников и конденсаторов.

Гл.11, §92-95

План лекции

    Распределение зарядов на проводнике. Проводник во внешнем электрическом поле.

    Электроемкость уединенного проводника. Электроемкость шара.

    Конденсаторы и их электроемкость. Последовательное и параллельное соединение конденсаторов.

    Энергия электростатического поля.

    Распределение зарядов на проводнике. Проводник во внешнем электрическом поле.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).

т.к. аЕ=0, то

в любой точке внутри проводника Е=0.


во всех точках внутри проводника потенциал постоянен.

    Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

Если S - поверхность заряженного проводника, то внутри нееE=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно великана острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.

    Электроемкость уединенного проводника. Электроемкость шара.

Если заряд на проводнике увеличить в несколько раз, потенциал в каждой точке поля, окружающего проводник, возрастет:

Электроемкость проводника численно равна заряду, который нужно сообщить проводнику для изменения его потенциала на единицу.

1 Ф - емкость проводника, которому нужно сообщить заряд 1 Кл для изменения потенциала на 1 В.

Емкость проводника не зависит от металла, из которого он изготовлен.

Емкость зависит от размеров и формы проводника, окружающей среды и наличия вблизи других проводников. В диэлектрике емкость увеличивается в раз.

Вычислим емкость шара:

    Конденсаторы и их электроемкость. Последовательное и параллельное соединение конденсаторов.

Емкость уединенных проводников невелика, но она резко возрастает при наличии рядом других проводников, т.к. потенциал уменьшается за счет противоположно направленного поля индуцированных зарядов.

Это обстоятельство позволило создать устройства - конденсаторы, которые позволяют при небольших относительно окружающих тел потенциалах накапливать на себе («конденсировать») заметные по величине заряды.

Конденсатор - система из двух проводников, разделенных диэлектриком, расположенных на небольшом расстоянии друг от друга.

Поле сосредоточенно в пространстве между обкладками.

Конденсаторы разделяются:

    по форме: плоские, цилиндрические, сферические;

    по роду диэлектрика между обкладками:

воздушные, бумажные, слюдяные, керамические;

    по виду емкости: постоянной и переменной емкости.

Обозначения на радиосхемах

Емкость конденсатора численно равна заряду, который нужно сообщить одной из обкладок, чтобы разность потенциалов между ними изменить на единицу.

.

Она зависит от размеров и формы обкладок, расстояния и диэлектрика между ними и не зависит от их материала.

Емкость плоского конденсатора:

S - площадь обкладок,d - расстояние между ними.

Емкость реального конденсатора определяется этой формулой тем точнее, чем меньше d по сравнению с линейными размерами обкладок.

а) параллельное соединение конденсаторов

по закону сохранения заряда

Если C 1 = C 2 = ... = C ,C об =CN.

б) последовательное соединение конденсаторов

Если С 1 = С 2 = ... = С,
.

    Энергия электростатического поля.

А. Энергия заряженного проводника.

Если имеется заряженный проводник, то его заряд фактически «слеплен» из одноименных элементарных зарядов, т.е. заряженный проводник обладает положительной потенциальной энергией взаимодействия этих элементарных зарядов.

Если этому проводнику сообщить одноименный с ним заряд dq, будет совершена отрицательная работаdA , на величину которой возрастет потенциальная энергия проводника

,

где - потенциал на поверхности проводника.

При сообщении незаряженному проводнику заряда qего потенциальная энергия станет равной

т.к.
.

Б. Энергия заряженного конденсатора.

Полная энергия заряженного конденсатора равна той работе, которую надо совершить для его зарядки. Будем заряжать конденсатор, перенося заряженные частицы с одной пластины на другую. Пусть в результате такого переноса к какому-то моменту времени пластины приобрели заряд q, а разность потенциалов между ними стала равной

.

Для переноса очередной порции заряда dq необходимо совершить работу

Следовательно, полная энергия, затраченная на зарядку конденсатора

от 0 до q

Вся эта работа пошла на увеличение потенциальной энергии:

(1)

Объемная плотность энергии электростатического поля

Выразим энергию электрического поля конденсатора через величины, характеризующие электрическое поле:

(2)

где V=Sd- объем, занимаемый полем.

Формула (1) связывает энергию конденсатора с зарядом на его обкладках, формула (2) - с напряженностью поля. Где же локализована энергия, что является носителем энергии - заряды или поле? Ответ вытекает из существования электромагнитных волн, распространяющихся в пространстве от передатчика к приемнику и переносящих энергию. Возможность такого переноса свидетельствует о том, что энергия локализована в поле и переносится вместе с ним. В пределах электростатики бессмысленно разделять энергию заряда и поля, поскольку постоянные во времени поля и обуславливающие их заряды не могут существовать обособленно друг от друга.

Если поле однородно (плоский конденсатор), заключенная в нем энергия распределяется в пространстве с постоянной плотностью.

объемная плотность энергии.

    Он будет находиться в пол-ной безопасности внутри металличес-кой кабины, если не будет пытаться из нее выйти, пока внешняя ее часть не будет разряжена или не обесточе-на сеть. Пассажиры самолета нахо-дятся в безопасности, когда в него ударяет молния, потому что заряд проводится вокруг внешней части фю-зеляжа в низлежащую атмосферу. Были проделаны опыты, в ходе ко-торых к крыше автомобиля, проез-жающего мимо высоковольтного ге-нератора, прилагался потенциал 1 млн. В. Несмотря на громадный заряд между генератором и автомобилем, водитель мог повторно продемонстрировать опыт без какого-либо ущерба и для себя, и для автомобиля. Эти экспе-рименты показывают, что заряд рас-полагается на внешней поверхности проводника.


    Примечание.

    Это относится в рав-ной степени и к полым, и к монолит-ным проводникам, и, конечно, к изо-ляторам.

    Если некоторый отрицательный за-ряд помещен на металлическую сфе-ру, находящуюся на изолирующей подставке, как на рисунке 1, а, то отрицательные заряды взаимооттал- киваются и перемещаются через ме-талл. Электроны распределяются, по-ка каждая точка на сфере не под-нимается до одинакового отрицатель-ного потенциала; перераспределение заряда затем прекращается. Все точ-ки заряженной сферы должны иметь одинаковый потенциал, поскольку ес-ли бы этого не произошло, то между различными точками на проводнике должна была бы существовать раз-ность потенциалов. Это бы вызывало движение зарядов, до тех пор покуда потенциалы не уравнялись бы. Заря-женный проводник вне зависимости от его формы должен, таким образом, иметь одинаковый потенциал во всех точках как на, так и внутри его по-верхности. Проводник цилиндричес-кой формы на рисунке 1, б имеет постоянный положительный потенци-ал во всех точках его поверхности. Точно так же отрицательно заря-женный проводник грушевидной фор-мы на рисунке 1, в имеет постоянный отрицательный потенциал но всей его поверхности. Итак, заряд распре-деляется таким образом, что потен-циал является однородным по всему проводнику. На телах правильной формы, такой, как сфера, распреде-ление заряда будет равномерным или однородным. На телах же неправильной формы, таких, какие показаны на рисунке 1, б и в, нет рав-номерного распределения заряда по их поверхности. Заряд, который на-капливается в любой данной точке на поверхности, зависит от кривизны поверхности в этой точке. Чем боль-ше кривизна, т. е. чем меньше ради-ус, тем больше заряд. Таким обра-зом, большая концентрация заряда присутствует на «заостренном» конце грушеобразного проводника, чтобы поддерживать во всех точках по-верхности одинаковый потенциал.


    Подобные же эксперименты могут быть проведены для проверки распре-деления заряда по поверхностям проводников различной формы. Вы долж-ны обнаружить, что заряженная сфе-ра имеет однородное распределение заряда по своей поверхности.

    Если вы присоедините тонко за-остренный проводник к высоковольт-ной электропередаче, т. е. вставите его в свод генератора Ван-де-Граафа, то вы сможете ощутить «электричес-кий ветер», держа руку в нескольких сантиметрах от заостренного конца проводника, как на рисунке 2, а. Высокая концентрация положитель-ного заряда на острие проводника бу-дет притягивать отрицательные заря-ды (электроны) до тех пор, пока за-ряд не нейтрализуется. В то же время положительные ионы в воздухе оттал-киваются положительным зарядом на острие. Среди молекул воздуха в ком-нате всегда присутствуют положи-тельные ионы (молекулы газов, из ко-торых состоит воздух, потерявшие один-два электрона) и некоторое чис-ло отрицательных ионов («потерян-ные» электроны). На рисунке 2, б показано движение заряда в воздухе, т. е. положительно заряженные ионы, отталкиваемые от положительно за-ряженного острого проводника, и от-рицательно заряженные ионы, притя-гиваемые к нему. Притяжение отрицательных зарядов (электронов) к по-ложительно заряженному острию ней-трализует положительные заряды на острие и, следовательно, понижает его положительный потенциал. Та-ким образом, заряженный проводник разряжается путем, известным как разряд — стекание заряда с острия. Положительные заряды, которые устремляются прочь от точечного проводника,— это положительные ио-ны (почти молекулы воздуха), и имен-но это создает движение воздуха, или «ветер».

    Примечание.

    Этот процесс непре-рывен, потому что к куполу генера-тора Ван-де-Граафа постоянно до-бавляется заряд от генератора. Это объяснение показывает, что заострен-ный проводник очень хорошо подхо-дит для собирания заряда, так же как и для поддержания большой кон-центрации заряда.

    Громоотвод

    Важным применением стекания заряда с острия является громоотвод. Движение облаков в атмосфере может образовывать на облаке громадный статический заряд. Это возрастание заряда может быть столь велико, что разность потенциалов между облаком и землей (нулевым потенциалом) ста-новится достаточно большой для то-го, чтобы преодолеть изолирующие свойства воздуха. Когда это проис-ходит, то воздух становится проводя-щим и заряд течет к земле в виде вспышки молнии, ударяя в ближай-шие или наиболее высокие здания или же в присутствующие объекты, т. е. заряд выбирает кратчайший путь к земле. Никогда не укрывайтесь под деревьями во время грозы: молния может ударить в дерево и ранить или убить вас, когда она устремляется вниз по дереву к земле. Лучше всего стать на колени на открытом месте, как можно ниже опустив голову и положив руки на колени, направив их пальцами к земле. Если молния и уда-рит в вас, то она должна ударить в ваши плечи, пройти вниз по вашим рукам и из ваших пальцев в землю. Таким образом, это положение защи-щает вашу голову и жизненно важ-ные органы, такие, как сердце.

    Если вспышка молнии ударила бы в здание, то мог бы быть нанесен большой ущерб. Громоотвод же мо-жет предохранить здание от этого. Громоотвод состоит из некоторого числа заостренных проводников, ук-репленных на высокой точке здания и соединенных с толстой медной про-волокой, которая проходит по одной из стен вниз и оканчивается на ме-таллической пластине, закопанной в земле. Когда положительно заряжен-ное облако проходит над зданием, происходит разделение равных и про-тивоположных по знаку зарядов в медной проволоке при высокой кон-центрации отрицательных зарядов на остриях проводников и положитель-ном заряде, который стремится акку-мулироваться на металлической плас-тине. Земля, однако, имеет громадный запас отрицательного заряда, и поэ-тому, как только образуется положи-тельный заряд на пластине, он немедленно нейтрализуется отрицательны-ми зарядами (электронами), исходя-щими из земли. Электроны также при-тягиваются из земли вверх к за-остренным концам проводника под воздействием положительного потен-циала на облаке. На остриях может сконцентрироваться очень высокий электрический заряд, и это способ-ствует уменьшению положительного потенциала облака, тем самым умень-шая для него возможность преодо-леть изолирующие свойства воздуха. Заряженные ионы воздуха также дви-жутся в «электрическом ветре»; от-рицательные заряды (электроны) от-талкиваются остриями и притягиваются облаком, также помогая пони-зить положительный его потенциал, т. е. разрядить облако. Положитель-ные ионы воздуха притягиваются по-ложительно заряженными заострен-ными проводниками, но громадные запасы отрицательного заряда в зем-ле могут предоставить неограничен-ный отрицательный заряд остриям, чтобы нейтрализовать их. Если мол-ния и ударит в проводник, то она пошлет свой электрический заряд че-рез проводник и «безопасно» в землю.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).


1.
Если заряды проводника находятся в равновесии, то равнодействующая всех сил, действующих на каждый заряд, равна нулю:

т.к. а Е=0, то

в любой точке внутри проводника Е=0.

2. Т.к.

во всех точках внутри проводника потенциал постоянен.

3. Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

4. Т.к. линии вектора перпендикулярны эквипотенциальным поверхностям, линии перпендикулярны поверхности проводника.

5. Согласно теореме Гаусса

Если S - поверхность заряженного проводника, то внутри нее E=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика на острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.

Идеальной физической моделью заряда в электростатике является точечный заряд.

Точечным зарядом называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других тел или до рассматриваемой точки поля. Иными словами, точечный заряд - это материальная точка, которая имеет электрический заряд.

Если заряженное тело настолько велико, что его нельзя рассматривать как точечный заряд, то в этом случае необходимо знать распределение зарядов внутри тела.

Выделим внутри заряженного тела малый объем и обозначим через электрический заряд, находящийся в этом объеме. Предел отношения , когда объем неограниченно уменьшается, называют объемной плотностью электрического заряда в данной точке . Обозначают ее буквой :

Единицей объемной плотности заряда в СИ является кулон на кубический метр (Кл/м 3).

В случае неравномерно заряженного тела плотность различна в разных точках. Распределение заряда в объеме тела задано, если известно как функция координат.

В металлических телах заряды распределяются только внутри тонкого слоя, прилегающего к поверхности. В этом случае удобно пользоваться поверхностной плотностью заряда , которая представляет собой предел отношения заряда к площади поверхности, по которой распределен этот заряд:

где - заряд, находящийся на участке поверхности площадью .

Следовательно, поверхностная плотность заряда измеряется зарядом, приходящимся на единицу поверхности тела. Распределение зарядов по поверхности описывается зависимостью поверхностной плотности (x, y, z) от координат точек поверхности.

Единицей поверхностной плотности заряда в СИ является кулон на квадратный метр (Кл/м 2).

В том случае, если заряженное тело по форме представляет собой нить (диаметр поперечного сечения тела много меньше его длины , удобно использовать линейную плотность заряда

где - заряд, находящийся на длине тела.

Единицей линейной плотности заряда в СИ является кулон на метр (Кл/м).

Если известно распределение зарядов внутри тела, то можно вычислить напряженность электростатического поля, создаваемого этим телом. Для этого заряженное тело мысленно разбивают на бесконечно малые части и, рассматривая их как точечные заряды, вычисляют напряженность поля, создаваемую отдельными частями тела. Суммарную напряженность поля находят затем суммированием полей, создаваемых отдельными частями тела, т.е.

Металлические проводники в целом являются нейтральными: в них поровну отрицательных и положительных зарядов. Положительно заряженные - это ионы в узлах кристаллической решетки, отрицательные - электроны, свободно перемещающиеся по проводнику. Когда проводнику сообщают избыточное количество электронов, он заряжается отрицательно, если же у проводника «отбирают» какое-то количество электронов, он заряжается положительно.

Избыточный заряд распределяется только по внешней поверхности проводника. Если проводник полый, то на его внутренних поверхностях нет зарядов. Это используют для полной передачи заряда от одного проводника другому (см. рис. 8).

Отсутствие поля внутри полости в проводнике позволяет создать электростатическую защиту. Проводник или достаточно густая металлическая сетка, окружающие со всех сторон некоторую область, экранируют ее от электрических полей, созданных внешними зарядами.

В электростатике рассматривается стационарное, неизменное распределение зарядов. Условием стационарности является равенство нулю напряженности поля внутри проводника: Е = 0. Если бы напряженность не была равна нулю, это создало бы электрические силы, вызывающие направленное перемещение электронов, т.е. электрический ток.

Избыточные заряды, сообщаемые проводнику, распределяется равномерно только по поверхности металлических сферы или шара. Во всех остальных случаях заряды распределяются неравномерно: чем больше кривизна поверхности, тем больше поверхностная плотность зарядов на поверхности проводника. Докажем это. Возьмем два шара радиусами R 1 и R 2 , заряженные зарядами q 1 и q 2 , соответственно. Соединим их проволочкой. Заряды будут перемещаться с одного шара на другой до тех пор, пока потенциал всей системы не станет одинаковым. Влиянием проволочки будем пренебрегать.

Таблица 14

Найдем напряженность поля заряженного проводника вблизи его поверхности, используя теорему Гаусса. Весь проводник представляет собой одну эквипотенциальную поверхность. Силовые линии перпендикулярны эквипотенциальным поверхностям. Выберем в качестве гауссовой поверхности S цилиндр очень малого размера, образующие которого перпендикулярны поверхности проводника (см. рис. 9). В пределах цилиндра поверхностную плотность заряда будем считать постоянной.

Таблица 15

Таким образом, чем более искривлена поверхность заряженного проводника, тем больше скапливается на ней зарядов и тем больше оказывается напряженность поля в этом месте. На рис.показаны силовые линии и эквипотенциальные поверхности поля заряженного тела. Наибольшая напряженность получается у острых выступов поверхности. Это приводит к так называемому «стеканию зарядов». В действительности из-за высокой напряженности вблизи острия возникают сложные явления: могут ионизироваться молекулы воздуха, дипольные молекулы втягиваются в область более сильного поля, в результате скорость потока частиц от острия оказывается большей, и образуется «электрический ветер». Этот ветер может привести во вращение легкое колесо, находящееся вблизи острия. Воздух становится проводящей средой, возникает разряд, вблизи острых концов часто наблюдается свечение. Поэтому всем деталям в электроустановках, находящихся под высоким напряжением, придают закругленную форму и делают их поверхности гладкими.