Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Холодильные установки для фруктов и овощей. Холодильные камеры для хранения овощей и фруктов. Технические характеристики витрины ISABELLA

Холодильные установки для фруктов и овощей. Холодильные камеры для хранения овощей и фруктов. Технические характеристики витрины ISABELLA

Введение

Наиболее распространенным способом хранения фруктов и овощей является хранение в холодильных складах. Длительность хранения определяется целым рядом факторов, начиная от влияния почвенно — климатических условий возделывания культур, сортовых особенностей, рационального использования удобрений, агротехники, орошения, системы защиты от вредителей, болезней и сорняков, сроков и способов уборки, товарной обработки и, конечно же, способов и условий хранения.

Все биохимические процессы в фруктах и овощах зависят от температуры. При высокой температуре происходит ускоренный обмен веществ, потеря влаги, витаминов, органических веществ. Проще говоря, овощи начинают быстрее «стареть» и приходить в негодность.

Чтобы существенно уменьшить естественную убыль веса плодоовощной продукции и максимально продлить срок хранения, необходимо как можно быстрее охладить продукцию после сбора урожая и поддерживать оптимальные параметры хранения.

Холодильные склады представляет собой комплексы зданий и сооружений по приемке, послеуборочной и предреализационной обработке и хранению продукции. Здания могут быть сблокированы между собой для обеспечения единого технологического процесса. Основными требованиями сохранности овощей и фруктов являются обеспечение нужных температурных режимов для каждого вида плодов и определенные режимы вентилирования.

Влажность и температурный режим

После уборки плодов и помещения их в холодильные склады самыми важными процессами, обеспечивающими длительное хранение, являются процессы дыхания и транспирации.

Поэтому для оптимального хранения плодов и овощей необходимо создание и поддержание оптимального температурно-влажностного режима, оптимальной концентрации кислорода и углекислого газа, удаление этилена.

Оптимальные параметры температуры и влажности для обычных холодильников для основных видов культур приведены в таблице.

Яблоки -1+4 90-95 1-8 месяцев
Баклажаны 8-12 90-95 1-2 недели
1-2 недели
Брокколи 0-1 95-100 1-2 недели
Вишня -1+2 90-95 3-7 дней
Земляника 0 90-95 5-7 дней
Капуста 0-1 95-100 3-7месяцев
Морковь 0-1 95-100 4-8 месяцев
Цветная капуста 0-1 95-100 2-4 недели
Сельдерей 0-1 95-100 1-3 месяца
Слива -1+2 90-95 1- 8 недель
Смородина -0,5 -0 90-95 7-28 дней
Огурцы 8-11 90-95 1-2 недели
Чеснок 0 70 6-8 месяцев
Виноград 0-1 90-95 4-6 месяцев
Дыни 4-15 85-90 1-3 недели
Лук -1-0 70-80 6-8 месяцев
Груши -1+3 90-95 1-6 месяцев
Картофель(молодой) 4-5 90-95 3-8 недель
Картофель 4-5 90-95 4-8 месяцев
Малина -0,5 -0 90-95 2-3 дня
Перец 7-10 90-95 1-3 недели
Персик -1+2 90 2-6 недель
Черешня -1+2 90-95 2-3 недели

Режим регулируемой газовой среды

Холодильник с регулируемым режимом газовой среды позволяет резко снизить интенсивность дыхания плодов, что способствует более длительному и качественному их хранению. Для различных культур и сортов минимально допустимая концентрация кислорода может быть определена методом его снижения до момента образования этанола. Если процесс образования этанола будет определен в самой ранней стадии, то его можно остановить при помощи повышения концентрации кислорода на десятые доли процента, таким образом определяется минимально допустимая концентрация кислорода для данного сорта.

Основным условием поддержания оптимально низкой концентрации кислорода является герметически закрывающаяся камера. Другим важным компонентом атмосферы, влияющим на хранение плодоовощной продукции, является углекислый газ, который выделяется плодами в результате дыхания и в повышенных концентрациях тормозит этот процесс. Очень высокая концентрация СО 2 приводит к гибели продукции в результате превращения сахаров в этанол.

Для большинства фруктов и овощей оптимальная концентрация углекислого газа составляет от 0,5% до 5%. Избыточное содержание СО 2 в камерах холодильников с регулируемой газовой средой удаляется с помощью углекислотных адсорберов. Быстрое достижение оптимальной концентрации кислорода достигается при помощи продувки камер азотом. В настоящее время разработаны эффективные способы создания и поддержания концентрации регулируемой атмосферы при помощи автоматической компьютерной газоаналитической системы управления.

Оборудование для регуляции газовой среды

  • C.A. (Controlled Atmosphere) – регулируемая среда (РС).
  • RCA (Rapid Controlled Atmosphere) — быстрое снижение концентрации кислорода.
  • U.L.O. (Ultra Low Oxygen) – ультранизкое содержание кислорода в камере.
  • ILOS (Initial Low Oxygen Stress) — сверхбыстрое снижение уровня кислорода в камере за короткий промежуток времени.
  • LECA (Low Ethylene Controlled Atmosphere) — снижение уровня этилена в камере с помощью каталитического конвертера.

Схема реализации технологии хранения в регулируемой атмосфере

Наша компания предлагаем весь спектр оборудования, позволяющий сохранять продукцию в свежем виде предельно долго:

  • -адсорберы CO 2
  • -адсорберы SO 2
  • — адсорберы этилена
  • — генераторы азота
  • — каталитические преобразователи
  • — анализаторы
  • — увлажнители

Строительство холодильных складов

При строительстве холодильного склада для реализации технологии хранения следует учитывать специфические требования для фруктов и овощей по поддержанию высокой относительной влажности в камерах (88 — 95%). Поэтому весьма важным является правильный расчет и подбор холодильного оборудования с соответствующими схемой охлаждения, холодопроизводительностью, кратностью воздухообмена, техническими характеристиками воздухоохладителей, скоростью движения воздуха и т. д.

Удельные затраты на единицу вместимости при строительстве нового холодильника зависят от проекта, т. е. размеров и количества камер, наличия зала товарной обработки, экспедиции, отгрузочных шлюзов, технического уровня системы охлаждения и регулируемой атмосферы. Этот показатель может составлять от 40 до 75 евроцентов на 1 кг хранимой продукции.

Система управления

Мы предлагаем нашим заказчикам максимально легкое и интуитивно понятное программное обеспечение для управления технологией хранения. Возможно использование, как некоторых элементов, так и всей полностью автоматической системы контроля, которая благодаря наблюдению за вентиляторами, люками, нагревателями и механическому охлаждению обеспечивает оптимальный климат в хранилище. Под оптимальными условиями подразумевается необходимая для продукта температура, относительная влажность и концентрация углекислого газа.

Системы управления климатом имеют:

  • — Надежные измерительные приборы и датчики
  • — Управление температурой в овощехранилище, влажностью, концентрацией углекислого газа
  • — Легкая и интуитивная в управлении система
  • — Надежные и качественные компоненты системы

Операторская

Визуализация

Технологии хранения в контейнерах

Преимущества хранения в контейнерах:

  • обеспечивается хорошее вентилирование плодов,
  • возможность контроля и локализации поврежденных плодов;
  • давление оказываемое на нижнюю часть контейнера, намного меньше, чем при хранении насыпью
  • контейнеры легко перемещаются с помощью погрузчика,
  • оперативность загрузки и выгрузки продукции.

Два вида контейнеров.
1. Складывающийся
2. Не трансформирующийся

Недостатки хранения в контейнерах:

  • высокая стоимость контейнеров;
  • контейнеры необходимо обрабатывать для предотвращения инфекции от предыдущего урожая;
  • необходимы дополнительные площади для хранения пустых контейнеров.

Наши преимущества

  • Инновации, ноу — хау, цифровое управление в хранении фруктов и овощей.
  • Качественно новый уровень оборудования и автоматизации хранения.
  • Оригинальное программное обеспечение.
  • Сокращение расхода электроэнергии на хранение в два раза по сравнению с традиционными решениями.
  • Высокая эксплуатационная надежность и технически простая система управления.
  • Полная сохранность продукции с низкими затратами;
  • Гарантия соблюдения нормативных параметров вентилирования и микроклимата.
  • Тщательный учет особенностей хранилища, биологии и целевого назначения объекта хранения.
  • Возможность раздельного регулирования условий хранения в многосекционных хранилищах.
  • Комфортные условия работы в хранилище,.
  • Квалифицированный шеф- монтаж и ввод в эксплуатацию.
  • Техническая поддержка, сопровождение, обучение.

Секреты хранения винограда

Виноград после сбора должен быть надлежащим образом упакован и охлажден. Это два основных фактора для успешного хранения винограда. Условия хранения винограда зависят также от факторов среды хранения — это температура, движение воздуха в помещении, относительная влажность воздуха.

Чем ниже температура воздуха, тем дольше может храниться виноград. Оптимальной температурой для хранения винограда считается от 0 – до +1,5 градуса. Относительная влажность желательно высокая более чем 95 %.

Повышенная скорость вентиляции холодного воздуха обеспечивает удаление высокой температуры во время охлаждения, но в течении хранения движение воздуха должно быть уменьшено, чтобы предотвратить иссушение винограда.

Виноград окуривается диоксидом серы для уничтожения различных грибов, которые могут принести большие потери винограда даже храня виноград при низких температурах. Всякая инфекция, которая имеется в ягоде, продолжает развиваться в течение хранения, и применение диоксида серы обязательно для предотвращения распространения заболевания в соседние здоровые виноградные ягоды.

Состав газовой среды для хранения винограда

На сегодняшний день уже выведены формулы составов газовой среды для хранения следующих сортов винограда.

В последние годы с ростом строительства загородного жилья, коттеджей, увеличилось количество заказов холодильных камер для хранения фруктов и овощей при стабильно положительной температуре. При правильном хранении в холодильной камере овощи и фрукты сохраняют свежесть и витамины длительное время.

Правильное хранение овощей и фруктов - это соблюдение температурного режима и режима влажности. В течение года необходимо поддерживать одинаковую температуру воздуха. Соответственно, летом необходимо охлаждать, а зимой - нагревать объем холодильной камеры или хранилища для овощей и фруктов. Охлаждение холодильной камеры и хранилища проводят с использованием холодильной установки, при помощи воздухоохладителей, установленных в камере. Нагрев осуществляется либо нагревателями, работающими на различных видах энергии (электрической, тепловой от воды, предварительно нагретым воздухом и т.д.), либо с помощью тех же воздухоохладителей, включив их тэны на нагрев.

Холодильные камеры (шкафы) для хранения вина

Для ценителей хорошего вина иметь собственную коллекцию уже стало доброй традицией. Но хранить хорошее вино в холодильнике или при комнатной температуре неприемлемо.
Специально для ценителей вина наша компания готова предложить проектирование и монтаж холодильных камер для хранения вина.


Холодильные камеры для хранения шуб

Вадим Гринберг

Для людей, далеких от понимания современных технологий складирования, знакомое с детства понятие «овощехранилище» способно вызвать не слишком приятные зрительные и обонятельные ассоциации. Однако тем, кто «в теме», совершенно очевиден гигантский технологический скачок, который произошел в этой сфере за последние 20–30 лет. Современный склад для хранения овощей и фруктов оснащен целым комплексом инженерных систем, позволяющих превратить простую, на первый взгляд, задачу максимально долгого сохранения урожая в высокотехнологичный управляемый процесс.

Чтобы оценить сложность этого процесса, нужно хотя бы кратко остановиться на том, какие, собственно, задачи приходится решать в процессе хранения – с какими естественными процессами, происходящими со столь вожделенной в холодное зимнее время плодоовощной продукцией приходится бороться.

В растительных продуктах, к которым относятся овощи и фрукты, содержится от 75 до 95% воды. С момента сбора урожая в плодах и овощах начинают происходить химические и микробиологические процессы, характер которых определяется биологическими функциями. Основным физиологическим процессом, продолжающимся в плодах и овощах после сбора, является дыхание. Интенсивность дыхания и связанных с ним обменных процессов зависит от температуры. В частности, для плодов и ягод характерно так называемое послеуборочное созревание, в процессе которого, за счет перехода питательных веществ из мякоти, формируются семена. Оно сопровождается снижением количества хлорофилла (постепенно исчезает зеленый цвет) и появлением других пигментов, накоплением этилена, уменьшается содержание витаминов и влаги. Таким образом, возможный срок хранения овощей и фруктов определяется в основном степенью их зрелости при сборе урожая.

На практике различают две степени зрелости – съемную и потребительскую. Съемная зрелость определяется необходимостью последующей транспортировки и возможностями хранения, а потребительская – пригодностью для использования. С точки зрения потребителя одним из главных процессов, происходящих в плодах и овощах после сбора, является испарение влаги. Испарение приводит к снижению массы и увяданию. Заметное увядание плодов наступает при потере 4–6% влаги, а ягод и листовых овощей – при потере 1,5–2%.

Следовательно, главная задача при хранении сводится к торможению физиолого-биохимических процессов, предотвращению развития фитопатогенных микроорганизмов и уменьшению потерь влаги. Один из эффективных способов добиться этого результата – быстрое предварительное охлаждение. Скорость такого охлаждения зависит от вида плодов и овощей. Если съемная и потребительская зрелость совпадают, что характерно для ягод (в т. ч. вишни, черешни) и огурцов, или наступает через сравнительно короткий период, как у абрикосов, персиков, слив и дынь, процесс охлаждения должен занимать не более 5 часов. А, например, у зимних сортов яблок и груш, которые достигают потребительской зрелости в процессе длительного хранения, процесс охлаждения может занимать и сутки.

То есть первая задача, которую необходимо решить вне зависимости от того, закладываются ли овощи и фрукты на хранение в непосредственной близости от места сбора либо транспортируются к месту хранения на значительные расстояния, – это обеспечение возможности предварительного охлаждения. Его можно осуществлять в обычных камерах хранения при частоте воздухообмена 30–40 раз в час, в специальных камерах предварительного охлаждения с увеличенной до 60–100 раз в час частотой воздухообмена, в аппаратах интенсивного воздушного охлаждения, в том числе туннельного типа, а также холодной водой методом орошения или погружения.


Решение задачи достаточно долговременного хранения овощей и фруктов, таким образом, может развиваться двумя основными путями: хранение в непосредственной близости от места сбора урожая и хранение в регионе потребления. Регионами наиболее концентрированного потребления являются мегаполисы, где стоимость хранения достаточно велика за счет высоких ставок аренды складских площадей. Тем не менее этот вариант вполне может рассматриваться для импортируемых фруктов и овощей, закупаемых большими, в том числе судовыми, партиями.

Однако наиболее интересным с коммерческой точки зрения представляется вариант территориального объединения процесса выращивания, сбора урожая и последующего хранения. В этом случае склады для хранения овощей и фруктов могут возводиться по одной из относительно недорогих строительных технологий, в частности, с использованием облегченных металлоконструкций или по бескаркасной технологии. Каркасные хранилища выполняются из быстровозводимых облегченных металлоконструкций. Для создания теплоизоляционного контура, как правило, используются сэндвич-панели, для внешней обшивки применяется профилированный стальной лист. Такая конструкция относительно легко масштабируется, что позволяет увеличивать объем хранения.

Применение технологий бескаркасного строительства позволяет ускорить процесс возведения хранилищ за счет использования панелеформовочных машин. Созданные в результате применения такой технологии сооружения обладают высокой прочностью, устойчивостью к ветровым и снеговым нагрузкам. Их существенным преимуществом также является отсутствие мощного фундамента. Возводимые бескаркасным методом склады могут быть одно- или двухслойными, с прослойкой утеплителя между слоями.


В дальнейшем, в соответствии с поставленной задачей, могут выбираться варианты различной степени технологической оснащенности. Это определяется видом хранимой продукции – однородной или в ассортименте, способом ее хранения – навалом или в упаковочной таре, предполагаемым сроком хранения. Соответственно, при долговременном хранении разнотипной продукции необходимо обеспечить температурное зонирование.

Наиболее практичен вариант хранения овощей и фруктов с использованием холодильной системы и системы вентиляции. Его проблематика достаточно подробно рассмотрена в большом числе публикаций, касающихся строительства и оснащения среднетемпературных холодильных складов. В то же время очень большой интерес вызывают специальные технические устройства, которыми оснащаются именно склады для хранения овощей и фруктов, в первую очередь оснащенные системами организации регулируемого микроклимата и контролируемой атмосферы. Организация регулируемой атмосферы является технологией, которая позволяет значительно увеличить продолжительность хранения продукции и сохранить ее качество. Хранение фруктов и овощей в условиях регулируемой газовой среды происходит в специальных овощехранилищах, холодильных камерах, полимерных пленках, полиэтиленовых контейнерах.


В этой сфере существует также несколько уровней сложности. На первом уровне в основном достигается контролируемое содержание углекислого газа при поддержании необходимого температурного режима и влажности воздуха. В этом случае параметры контролируемой атмосферы примерно соответствуют содержанию кислорода в 3–4% и углекислого газа в 3–5%, при том, что содержание кислорода в обычной атмосфере составляет порядка 21%, азота – 78%, углекислого газа 0,03%. Превышение содержания CO2 приводит к довольно быстрой порче овощей и фруктов, при этом, в частности, может появляться неприятный вкус и запах, наблюдаться развитие некоторых грибковых образований, ухудшиться товарный вид сохраняемых овощей и фруктов. Задача поглощения избыточного углекислого газа решается использованием скрубберов (иногда называемых газопромывателями). С помощью скрубберов из холодильных камер удаляют углекислый газ и часть образующегося этилена. Способ удаления достаточно прост и основан на применении активированного угля, который адсорбирует молекулы газа. Воздух из холодильной камеры прокачивается через активированный уголь с помощью вентилятора низкого давления, который потребляет минимум электроэнергии, а затем возвращается обратно.

Более сложная система создания контролируемой атмосферы предусматривает снижение содержания кислорода до 2–5% и углекислого газа до 1–3%. Это достигается за счет вытеснения их азотом, для чего в систему интегрируется генератор, который производит его из окружающего воздуха. Генератор азота состоит из двух взаимозаменяемых баков с углеродными молекулярными ситами, которые могут на протяжении определенного времени адсорбировать молекулы кислорода. Когда один из баков насыщается, происходит автоматическое переключение на другой бак. В наполненном баке в это время осуществляется процесс регенерации.


Третий, наиболее высокий с точки зрения технологической реализации, уровень создания регулируемой атмосферы предусматривает не только ультранизкую концентрацию кислорода (в пределах 1–1,5%) и углекислого газа (0–2%), но и снижение содержания выделяющегося в процессе созревания фруктов и овощей этилена. Данная схема требует применения еще одного класса устройств – каталитического конвертера этилена. Газ этилен выделяется овощами и фруктами и стимулирует их созревание, поэтому контроль над его содержанием дает возможность хранить их в течение длительного периода времени.

На рынке присутствуют каталитические конвертеры этилена от многих производителей. Общий принцип их действия основан на принудительной рециркуляции воздуха над слоем катализатора, хранимым при повышенной температуре. В процессе каталитического взаимодействия этилена с кислородом воздуха происходит его распад на углекислый газ и воду.

При помощи конвертора можно достичь соотношения этилена к общему объему воздуха в камере 1/109 без применения токсичных химических реагентов. Таким образом, процесс очищения воздуха в холодильных камерах не оказывает негативного воздействия на окружающую среду. Не менее важным является малое количество энергии, необходимое для работы конвертора. Это обеспечивается за счет рекуперации тепла в закрытой системе конвертора и холодильной камеры.

Однако собственно организацией хранения процесс, как правило, не заканчивается. Необходимо еще предусмотреть техническую стадию придания овощам и фруктам товарных качеств, то есть организовать процесс дозаривания непосредственно перед отправкой продуктов в торговые точки. Рассмотрим этот процесс на примере такого хорошо известного нам фрукта, как банан. Эти фрукты произрастают в тропиках и субтропиках, при этом промышленно выращиваются преимущественно в Южной и Центральной Америке. Бананы собирают в недозрелом виде, а в пути и по прибытии в пункты потребления они дозревают в складах. В Россию бананы поставляются морским путем мощными рефрижераторными судами, холодильные установки которых позволяют сохранить фрукты в состоянии «съемной» зрелости в течение всего периода транспортировки. Срок хранения может варьироваться от 28 дней с момента сбора до 40–50 дней. Его увеличение достигается за счет использования при хранении регулируемой атмосферы.


При подготовке к розничной торговле продукт доводится до определенной степени зрелости за счет выдерживания его в камерах газации. Процесс дозревания стимулируется этиленом (в противоположность стадии хранения, когда содержание этилена, наоборот, уменьшается). Обработка этиленом производится однократно.

Процесс доведения снятых недозрелых плодов в хранилищах, складах или специально оборудованных камерах до состояния потребительской спелости называется доза’риванием. Режим дозаривания может быть ускоренным (до 4 дней), нормальным (5–6 дней) и медленным (8 дней). Более высокое качество плодов наблюдается при медленном дозаривании бананов при пониженных температурах. Летом и зимой интервал температуры дозаривания различается. Если в процессе дозаривания допустить переохлаждение, в зеленых бананах появляются продольные прожилки коричневого цвета под верхним слоем кожуры, кожура становится серой. Результатом же повышения температуры за пределы оптимального интервала является размягчение мякоти, слабые ножки плодов, лопнувшая кожура и коричневые пятна на зеленовато-желтой кожуре. Также значительно снижается срок последующего хранения.

В камере дозаривания необходимо поддерживать высокий уровень влажности – 85–95% для поддержания товарного вида и предотвращения потери овощами и фруктами влаги. В ходе этого процесса контролируется как температура воздуха в камере, так и температура мякоти плода (поскольку в процессе дозревания плоды выделяют тепло). Температура окружающей среды, оптимальная для процесса дозаривания: +15...+18 °С.


Подытоживая сказанное выше, можно отметить, что в технологической схеме современного высокотехнологичного комплекса для долговременного хранения овощей и фруктов должна быть предусмотрена стадия ускоренного предварительного охлаждения (перед закладкой на хранение либо перед транспортировкой к месту хранения). В многопрофильном (для хранения различных видов овощей и фруктов) комплексе должны быть предусмотрены камеры хранения с автоматическим регулированием температуры в диапазоне от –2 до +7 °С с системой поддержания необходимого уровня влажности воздуха.

Если хранение осуществляется в условиях контролируемой атмосферы, то хранилище, наряду с необходимым комплексом холодильного и вентиляционного оборудования, может быть оборудовано скрубберами, генераторами азота и конвертерами этилена. Важное значение имеет финальная стадия – придание продуктам товарного вида и перевода их из охлажденного состояния, в котором они хранились, в состояние, соответствующее условиям продажи. При этом на продуктах не должен образовываться конденсат. Эта операция производится в так называемых «камерах отепления». Кроме того, на этой стадии может реализовываться процесс дозревания фруктов и овощей, для чего хранилище оснащается камерами дозаривания.

Все рассмотренные нами процессы требуют не только дорогостоящего оборудования, но и точного соблюдения всех параметров. Так что, перед тем, как насладиться вкусом и ароматом только что купленного «зимнего» яблока, не помешает вспомнить о том, что его появлению на нашем столе предшествовал сложный, весьма технологичный и такой важный процесс сохранения товарного вида и потребительских свойств.


Требования и выбор оборудования

А. Рикошинский

Предложение на российском рынке услуг складов-холодильников пока отстает от растущего спроса. Вероятней всего, и в обозримом будущем эта тенденция сохранится – потребности в хранении груза при низких температурах будут продолжать расти, что связано с расширением внутреннего потребления, следствием чего является рост как собственного производства замороженных продуктов, так и их импорта.

Современный склад-холодильник – это, как правило, отдельно стоящее здание, в котором находятся камеры хранения и вспомогательные помещения. Склады имеют подъездные автомобильные и железнодорожные пути и оснащены крытыми или открытыми эстакадами для приема и отпуска продукции. Конструктивные решения склада должны соответствовать СНиП 2.11.02-87 «Холодильники», по которым теплоснабжение, отопление, вентиляция, водопровод и канализация должны отвечать следующим требованиям.

Очистка воздуха, удаляемого из помещений машинного и аппаратного отделений аммиачных холодильных установок, предусматривается в соответствии с требованиями СНиП 2.04.05-91.

Аварийная вентиляция должна иметь пусковые приспособления и в вентилируемых помещениях (у выходов), и вне их (у наружных дверей), а также автоматически включаться при увеличении концентрации аммиака в помещениях выше предельно допустимой.

Расчетная температура воздуха и кратность воздухообмена в помещениях
Помещение Расчетная температура воздуха, °С Кратность воздухообмена
Приток Вытяжка Аварийная вытяжка
Машинное и аппаратное отделения холодильных установок:
  • аммиачных
  • фреоновых

По расчету, но не менее 2
По расчету, но не менее 3


Согласно СНиП 2.04.05486
То же
Помещение холодильного распределительного устройства аммиачных холодильных установок (в отдельных помещениях при вестибюле для многоэтажных холодильников, на антресолях в одноэтажных холодильниках) 5 Не менее 3 (периодического действия)
Лестничная клетка охлаждаемого склада 5
Машинное отделение лифтов 5
Помещение зарядки тяговых аккумуляторных батарей 16 По расчету плюс естественная вытяжка согласно ПУЭ
Электролитная 16 По расчету
Ремонтное помещение самоходных машин 16 2 2
Помещение зарядных устройств 5 По расчету

Вентиляторы и электродвигатели для вытяжной и аварийной вентиляции аммиачных машинных и аппаратных отделений предусматривают во взрывобезопасном исполнении.

Помещения для хранения картофеля, овощей, фруктов должны быть оборудованы приборами и устройствами, позволяющими контролировать и автоматически поддерживать температуру воздуха, а также приборами контроля относительной влажности. Конденсация влаги на внутренних поверхностях стен и на потолках не допускается.

Холодильники должны быть оборудованы хозяйственно-питьевым, производственным и противопожарным водопроводами и системами канализации.

Внутренний противопожарный водопровод в охлаждаемой части зданий холодильников (холодильные камеры с транспортным коридором) не предусматривается. Расчетный расход воды на наружное пожаротушение надлежит принимать, как для зданий категории В.

В зданиях холодильников должна предусматриваться открытая прокладка сетей внутреннего производственного водоснабжения. Прокладка сетей водоснабжения в охлаждаемых помещениях не допускается.

Для охлаждения машин и аппаратов холодильных установок допускается применение воды технического качества со следующими основными показателями:

  • жесткость общая – 2…6 мг-экв/л;
  • наличие свободной углекислоты – 10…100 мг-экв/л;
  • концентрация водородных ионов рН = 6,5…8;
  • мутность – 2…5 мг/л; железо – 0,1…0,3 мг/л.

Вода, потребляемая для мойки оборудования, инвентаря и полов, камер соленых рыботоваров, электролитных при зарядных станциях и ремонтных помещений самоходных машин, должна отвечать требованиям ГОСТ Р 51232–98.

Нормы водопотребления и водоотведения и температура воды
Производственный процесс Единица измерения Водопровод Канализация
Норма водо­потребления, л Температура воды, °С Норма водо­отведения, л
Оттаивание воздухоохладителей в камерах:
  • с положительными температурами
  • с отрицательными температурами

м 2 поверхности
м 2 поверхности

10

Не менее 15

15
3
Охлаждение конденсаторов и компрессоров Агрегат по паспортным данным
Мойка:
  • полов
  • подъемно-транспортных средств (электропогрузчиков, электрокаров)
  • инвентаря

м 2
1 машина

м 2 поверхности


3
150

До 50
До 50

Не менее 60


3
150

Примечание. Время оттаивания воздухоохладителей – 0,5 ч.

Поливочные краны должны быть установлены в камерах соленых рыботоваров, электролитных при зарядных станциях и в ремонтных помещениях самоходных машин из расчета один кран на 500 м 2 площади пола, но не менее двух кранов на этаж, на грузовых платформах – через каждые 25 м. В камерах соленых рыботоваров и на грузовых платформах должен быть предусмотрен сухотрубный водопровод.

Для холодильных установок должны предусматриваться, как правило, оборотные системы водоснабжения.

Воду, которая образуется при оттаивании воздухоохладителей, обычно используют в системе оборотного водоснабжения или на другие технологические нужды.

Бытовые и производственные сточные воды следует отводить в бытовую канализацию раздельными выпусками.

Сточные воды от приборов и аппаратов необходимо отводить в бытовую канализацию через индивидуальные или групповые гидравлические затворы, располагаемые в отапливаемых помещениях.

Сети канализации, прокладываемые в помещениях с отрицательными температурами воздуха и в неотапливаемых помещениях, должны быть оборудованы системой обогрева.

Сточные воды от мытья платформ необходимо отводить в бытовую канализацию. На выпусках следует устанавливать колодцы с гидрозатвором.


Эффективность работы любого склада, особенно если речь идет о хранении продуктов питания, зависит от комплекса факторов – ассортимента хранимой продукции, месторасположения склада, квалификации сотрудников и др. Не последнее место отводится уровню складского оборудования и автоматизации бизнес-процессов. Стремительное развитие рынка оптовой и розничной торговли продуктами питания, укрупнение торговых объектов, развитие крупных торговых сетей и т. д. – все эти причины обусловливают повышение внимания к качеству складского оборудования. Если не каждый отдельный товар, то группа товаров, входящих в ассортиментный набор, требует специфических условий и технологий хранения. Учитывая тот факт, что в зависимости от размеров ассортимент современного склада продуктов питания может составлять до 50 тысяч наименований, задача обеспечения склада необходимым оборудованием представляется довольно сложной. По этой причине выбору эффективного холодильного оборудования должно предшествовать всестороннее изучение технических и экономических условий процесса переработки материальных потоков. Только на основании тщательного анализа и расчетов можно успешно решить технические вопросы, возникающие при подборе оборудования и его монтаже.

Для отвода тепла из холодильных камер применяют три основных типа систем охлаждения:

  • непосредственного охлаждения;
  • с промежуточным хладоносителем;
  • воздушные (эти системы охлаждения применяют редко).

К основным характеристикам, которые учитываются на первом этапе при выборе холодильного оборудования, относятся:

  • обеспечиваемый температурный диапазон (поддерживаемые температурные режимы);
  • удобство монтажа и сервисного обслуживания;
  • коэффициент технического резервирования;
  • затраты на хладагент;
  • степень заводской готовности оборудования и др.


Затем решают следующие задачи:

  • выбирают схему охлаждения;
  • определяют тип хладагента;
  • определяют оптимальную производительность компрессорной, конденсаторной и испарительной частей системы при различных нагрузках;
  • выбирают оптимальную схему прокладки трубопроводов.

Естественно, в каждом конкретном случае возникает большое количество частных технических задач, от правильности решения которых зависит надежность работы всей системы.

Для поддержания необходимого температурного режима используют, как правило, системы непосредственного охлаждения или системы с хладоносителем. В системе непосредственного охлаждения жидкий хладагент из конденсатора, пройдя регулирующий вентиль, поступает в испарительные батареи, расположенные в охлаждаемых помещениях. За счет теплоты окружающего воздуха хладагент кипит, охлаждая воздух. Пары хладагента из батарей отсасываются компрессором. Система непосредственного охлаждения обязательно включает компрессорный агрегат и один или несколько воздухоохладителей, размещаемых в камерах хранения. Кроме того, в зависимости от того, как подается жидкий хладагент в испарительные батареи, системы непосредственного охлаждения подразделяют на насосные и безнасосные. В безнасосных системах жидкость поступает в батареи под действием разности давлений конденсации и кипения хладагента, а в насосных она подается специальным насосом. Насосные системы применяют главным образом на крупных холодильниках.



В качестве охлаждающей среды в системе непосредственного охлаждения применяется хладагент (фреон или аммиак), который при кипении в воздухоохладителе забирает тепло из окружающей среды. При выборе между фреоном и аммиаком учитывают следующие соображения: преимущества использования в качестве хладагента аммиака (R717) обусловлены тем, что он обладает термодинамическими и теплофизическими характеристиками, позволяющими получать высокий к.п.д. в холодильных установках, химически нейтрален по отношению к большинству конструкционных материалов холодильных установок, не растворяется в смазочных маслах, применяемых в конструкциях холодильных установок, за исключением меди и сплавов на ее основе, не чувствителен к влаге и легко обнаруживается в случае утечки, не способствует созданию парникового эффекта, имеет невысокую стоимость (не более 2200 руб./т) и легко доступен на рынке.

Вместе с тем у аммиака есть ряд серьезных недостатков. В частности, это вещество высокотоксичное (считается, что предельно допустимая концентрация аммиака в рабочих помещениях должна быть не выше 20 мг/м 3 , но даже при более низкой концентрации характерный запах аммиака в случае его появления вызывает сильную панику; при более высоких концентрациях появляются серьезные затруднения дыхания вплоть до удушья; смертельная концентрация аммиака – 30 г/м 3), оно взрывоопасно (при концентрации в воздухе 200…300 г/м 3 возникает угроза самопроизвольного взрыва; температура самовоспламенения равна 650 °С), создает опасность ожогов при растворении в воде, поскольку этот процесс сопровождается выделением значительного количества тепла, а кроме того, имеет высокую температуру нагнетания при сжатии в холодильных компрессорах.


Указанные недостатки аммиака приводят к возникновению серьезных организационно-технических и юридических проблем при проектировании, монтаже и эксплуатации аммиачных холодильных установок. В связи с этим в последние 10…15 лет при решении вопроса о выборе холодильного агента предпочтение все чаще отдается галогенсодержащим углеводородам – хладонам, или, как их принято называть в обиходе, фреонам. Из них наиболее широко в настоящее время применяется хладон (фреон) R22. Этот хладагент нетоксичен и взрывобезопасен, у него низкая температура нагнетания при сжатии в компрессорах, хорошие (по сравнению с другими хладонами) теплофизические и термодинамические характеристики, он химически нейтрален к большинству конструкционных материалов, имеет довольно низкий озоноразрушающий потенциал (ОРП = 0,05; по этому показателю данный R22 близок к аммиаку), в больших количествах производится в России, а стоимость его приемлемая.

К преимуществам системы непосредственного охлаждения относятся: простота конструкции холодильной установки; быстрое охлаждение камер, которое начинается сразу после пуска компрессора; возможность применения более высоких температур кипения для поддержания требуемых температур в охлаждаемом объеме по сравнению с другими способами охлаждения, что делает систему непосредственного охлаждения в эксплуатации наиболее выгодной, особенно для камер с низкими температурами (морозильных). Недостатками системы непосредственного охлаждения являются: опасность проникновения в охлаждаемые помещения хладагента, например аммиака, запах и концентрация которого может отрицательно повлиять на качество охлаждаемого продукта и здоровье людей, эксплуатирующих оборудование; увеличенная опасность в пожарном отношении (при работе с горючими хладагентами); сложность регулирования работы компрессора, особенно при наличии нескольких камер с разными температурами.

В установках с косвенным (промежуточным) охлаждением используется жидкий хладоноситель. Понижение температуры в холодильных камерах достигается за счет теплообмена между охлаждаемой средой и холодным хладоносителем, циркулирующим в теплообменных аппаратах. Хладоноситель в свою очередь охлаждается в испарителе при кипении хладагента. Такая система состоит из двух холодильных контуров: системы охлаждения жидкости (чиллера), работающей на хладагенте, и контура промежуточного хладоносителя (воды, пропиленгликоля или формиатных хладоносителей). Тепло окружающей среды в воздухоохладителях передается промежуточному хладоносителю, с помощью которого оно переносится к хладагенту.


Преимущества системы охлаждения с промежуточным хладоносителем следующие: исключается возможность проникновения хладагента непосредственно в охлаждаемую среду (в охлаждаемый продукт); простота регулирования температуры охлаждаемой среды в холодильных камерах, что достигается путем изменения количества хладоносителя, направляемого в теплообменный аппарат охлаждаемой камеры. Однако по сравнению с системой непосредственного охлаждения при охлаждении с промежуточным хладоносителем требуются: дополнительные линейные компоненты – теплообменный аппарат (испаритель), насос, запорная арматура; компрессор большей хладопроизводительности, так как при наличии теплоносителя (промежуточного хладоносителя) хладагент должен кипеть при более низкой температуре, а при этом снижается как хладопроизводительность, так и экономичность работы компрессора; большой расход электроэнергии на получение и передачу холода.

Система непосредственного охлаждения может быть централизованной и децентрализованной. В централизованной схеме в качестве холодильной машины используется один многокомпрессорный агрегат, снабжающий хладагентом все воздухоохладители. Децентрализованная схема состоит из нескольких локальных холодильных систем, полностью независимых друг от друга. Централизованные системы с многокомпрессорным агрегатом более удобны в управлении, чем децентрализованные, поскольку управлять компрессорами, конденсаторами и воздухоохладителями можно из одного места. Также более удобны обслуживание и ремонт таких систем, ведь компрессорное оборудование и агрегаты децентрализованной системы размещены, как правило, в разных частях склада, что затрудняет их обслуживание. В свою очередь у децентрализованной системы охлаждения есть свои преимущества:

  • не требуется специальное помещение для многокомпрессорного агрегата, а к монтажу небольших однокомпрессорных установок не предъявляется жестких требований по площади;
  • у небольших однокомпрессорных установок высокий коэффициент резервирования (ремонт или замена одной из них не оказывает определяющего влияния на производительность системы в целом);
  • децентрализованная система охлаждения предполагает небольшую протяженность и несложную систему разводки трубопроводов.


Как уже отмечено, в качестве жидкого хладоносителя в установках с косвенным охлаждением могут использоваться различные жидкости. В температурном диапазоне до +2 °С лучшим хладоносителем по теплофизическим, экономическим и экологическим параметрам является вода. Ее недостатки – высокая коррозионная активность по отношению к металлам и склонность к отложению солей на стенках оборудования. При температуре от +2 до –20 °С по совокупности характеристик теплофизических, экономических, токсикологических и органолептических, толерантности к изменению условий эксплуатации, надежности и стабильности лучшим для пищевых производств является хладоноситель на основе пропиленгликоля. При температуре ниже –20 °С те преимущества, которые дает пропиленгликоль, нивелируются повышением его вязкости, а на первый план выходят формиатные хладоносители, которым присущи чрезвычайно привлекательные теплофизические характеристики, практически не уступающие рассолу на основе CaCl 2 и лучшие, чем у многих других хладоносителей.

Однако их чувствительность к загрязнениям и кислороду воздуха сделала возможным применение формиатных хладоносителей только в закрытых системах в ограниченном интервале температур и с соблюдением целого ряда предосторожностей и ограничений.

В заключение отметим, что строительный рынок складов-холодильников будет развиваться в перспективе по двум направлениям: компании, которые позиционируют себя в качестве оптовых трейдеров, предлагающих большой ассортимент оборудования, разнообразие цен, несколько поставщиков с широким модельным рядом; компании, выполняющие проекты «под ключ» – выяснение проблем заказчика, разработка конкретного проекта, выбор необходимого оборудования и т. д. В любом случае будущее за теми компаниями, которые смогут предоставить потребителю за разумные деньги комплексное решение его задач и высокий уровень технической поддержки и сервиса.

Выращивать на участке овощи и фрукты – это ли не благо? В наше время, когда рынок и прилавки магазинов заполнены плодами, полными вредных для здоровья химических препаратов, лакомиться собственными продуктами одно удовольствие. Но если вам повезло, и урожай удался на славу, как хранить большой объем провизии? Выход один - купить холодильный шкаф для овощей и .

Как работает холодильное оборудование для хранения овощей и фруктов?

Холодильный шкаф – это не обыкновенный бытовой холодильник, который можно увидеть в каждом доме. Главный принцип работы прибора – формирование оптимальных условий хранения определенного вида продуктов. Как известно, овощи и фрукты обладают низкой устойчивостью к развитию патогенных бактерий и других микроорганизмов. Кроме того, для них характерна небольшая потеря воды, вследствие чего товарный вид плодов ухудшается, да и общий вес уменьшается. Все эти неблагоприятные факторы легко решаются использованием холодильного шкафа.

Холодильные камеры для хранения овощей и фруктов работают по принципу мгновенного охлаждения. После «шокового» охлаждения в камере агрегата наступает вполне комфортный для хранящихся продуктов температурный режим. Причем температура устанавливается автоматически, в зависимости от вида плодов. В целом диапазон составляет 0+14 ⁰С. Именно при такой температуре все химические и биологические реакции в плодах замедляются. Причем, у цитрусовых и моркови абсолютно разные режимы температуры. Например, для винограда выставляют 0+2 ⁰С, для 0 ⁰С, яблок - 0+4 ⁰С, бананов - +7+12. Кроме того, в холодильном шкафу должен устанавливаться определенный уровень влажности, чтобы ваши овощи и фрукты не испортились. Длительное хранение продуктов невозможно без вентиляции.

Таким образом, холодильная камера для овощей и фруктов представляет собой герметичное устройство с автоматической системой регулировки и контроля температуры, вентиляции и влажности. Поэтому просто приносите собранные плоды в агрегат, раскладываете по отсекам и выставляете нужные параметры согласно виду продукта.

Используют холодильные шкафы не только в быту, но и для продажи в магазинах, супермаркетах для демонстрации или хранения.

Как выбрать бытовую холодильную камеру для овощей и фруктов?

Для домашнего пользования оптимально приобрести агрегат по типу шкафа с одной или двумя дверями. Двери могут металлическими или стеклянными. Первое, на что стоит обратить при покупке, - это габариты холодильной камеры. Стоит обдумать, где будет помещен прибор, и учтите особенности помещения. Не забудьте и о том, что как вы пронесете камеру через дверной проем.

Обратите внимание на наличие регулировки параметров. Самый оптимальный вариант – холодильный шкаф с несколькими зонами с возможностью управления температуры в каждой из них. Отсутствие зон позволит выставить только один температурный режим во всей камере.

Обдумайте объем холодильного оборудования. Вам следует подсчитать приблизительный объем продуктов, которые вы намереваетесь хранить. Минимальный объем, встречающийся в продаже, – 35 л.

Если говорить о материалах, из которых изготовлен холодильный шкаф, то наиболее долговечно, особенно в условиях повышенной влаги, изделие из нержавеющей стали. Шкаф из металла, покрытого краской, к сожалению, быстро теряет красивый внешний вид.