Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Классификация отопительных приборов. Обзор современных отопительных приборов для теплоснабжения дома: электрические, газовые и для водяной системы Самые распространенные типы отопительных приборов

Классификация отопительных приборов. Обзор современных отопительных приборов для теплоснабжения дома: электрические, газовые и для водяной системы Самые распространенные типы отопительных приборов

Один из основных элемоптов систем водяного отопления - отопительный прибор -предназначен для теплопередачи от теплоносители в обогреваемое помещение.

Для поддержания необходимой температуры помещения требуется, чтобы в каждый момент времени теплопотери помещения Qп покрывались теплоотдачей отопительного прибора Qпp и труб Qтp.

Схема теплоотдачи отопительного прибора Qпp и труб для возмещения теплопотерь помещения Qп и Qдоп при теплопередаче Qт со стороны теплоносителя воды приведена на рис. 24.

Рис. 24. Схема теплопередачи отопительного прибора, расположенного у внешнего ограждения здания

Теплота Qт, подводимая теплоносителем для отопления данного помещения, должна быть больше теплопотерь Qп на величину дополнительных теплопотерь Qдоп вызываемых усиленным прогреванием строительных конструкций здания.

Qт=Qп + Qдоп

Отопительный прибор характеризуется площадью нагревательной поверхности Fпp, м2, рассчитываемой для обеспечения требуемой теплоотдачи прибора.

Отопительные приборы по преобладающему способу теплоотдачи подразделяются на радиационные (потолочные излучатели), конвективно-радиационные (приборы с гладкой внешней поверхностью) и конвективные (конвекторы с ребристой поверхностью).

При обогреве помещений потолочными излучателями {рис. 25) нагрев осуществляется главным образом за счет лучистого теплообмена между отопительными радиаторами (отопительными панелями) и поверхностью строительных конструкций помещения.

Рис. 25. Подвесная металлическая отопительная панель: а - с плоским экраном; б - с экраном волнообразной формы; 1 - греющие трубы; 2 - козырек; 3 - плоский экран; 4 - тепловая изоляция; 5 - волнообразный экран

Излучение от нагретой панели, попадая на поверхность ограждений и предметов, частично поглощается, частично отражается. При этом возникает так называемое вторичное излучение, также в конце концов поглощаемое предметами и ограждениями помещения.

Благодаря лучистому теплообмену повышается температура внутренней поверхности ограждений по сравнению с температурой при конвективном отоплении, а температура поверхности внутренних ограждений в большинстве случаев превышает температуру воздуха помещения.

При панельно-лучистом отоплении благодаря повышению температуры поверхностей в помещении создается обстановка, благоприятная для человека. Известно, что самочувствие человека значительно улучшается при повышении доли конвективного теплопереноса в общей теплоотдачи его тела и уменьшении излучения на холодные поверхности (радиационного охлаждения). Это как раз и обеспечивается при лучистом отоплении, когда теплоотдача человека путем излучения уменьшается вследствие повышения температуры поверхности ограждений.

При панельно-лучистом отоплении возможно понижение против обычной (нормативной для конвективного отопления) температуры воздуха в помещении (в среднем на 1-3° С), в связи с чем ещё более возрастает конвективная теплоотдача человека. Это также способствует улучшению самочувствия человека. Установлено, что в обычных условиях хорошее самочувствие людей обеспечивается при температуре воздуха в помещении 17,4° С при стеновых отопительных панелях и при 19,3° С при конвективном отоплении. Отсюда возможно сокращение расхода тепловой энергии на отопление помещений.

Среди недостатков системы панельно-лучистого отопления следует отметить:

Некоторые дополнительные увеличения теплопотерь через наружные ограждения в тех местах, где в них заделаны греющие элементы;-

Необходимость специальной арматуры для индивидуального регулирования теплоотдачи бетонных панелей;

Значительную тепловую инерцию этих панелей.

Приборы с гладкой внешней поверхностью являются радиаторы секционные, радиаторы панельные, гладкотрубные приборы.

Приборы с ребристой нагревательной поверхностью - конвекторы, ребристые трубы (рис. 26).

Рис. 26. Схемы отопительных приборов различных видов (поперечный разрез): а - радиатор секционный; б - радиатор стальной панельный; в - гладкотрубный прибор из трех труб; г - конвектор с кожухом; Д - прибор из двух ребристых труб: 1 - канал для теплоносителя; 2 - пластина; 3 - ребро

По материалу, из которого изготовляются отопительные приборы, различают металлические, комбинированные и неметаллические приборы. Металлические приборы выполняют в основном из серого чугуна и стали (листовой стали и стальных труб). Применяют также медные трубы, листовой и литой алюминий и другие металлы.

В комбинированных приборах используют теплопроводный материал (бетон, керамику и т. п.), в который заделывают стальные или чугунные греющие элементы (панельные радиаторы) либо оребренные металлические трубы, помещенные и неметаллический (например асбестоцомептпий) кожух (конвекторы).

К неметаллическим приборам относятся бетонные панельные радиаторы с заделанными пластмассовыми или стеклянными трубами, либо с пустотами, а также керамические, пластмассовые и другие радиаторы.

По высоте все отопительные приборы подразделяются на высокие (высотой более 650 мм), средние (более 400 до 650 мм), низкие (более 200 до 400 мм) и плинтусные (до 200 мм).

По величине тепловой инерции можно выделить приборы малой и большой инерции. Малоинерционные приборы имеют небольшую массу и вмещают небольшое количество воды. Такие приборы, выполненные на основе металлических труб малого сечения (например конвекторы) быстро изменяют теплоотдачу в помещение при регулировании количества впускаемого в прибор теплоносителя. Приборы имеющие большую тепловую инерцию - массивные, вмещающие значительное количество воды (например бетонные или секционные радиаторы), теплоотдачу изменяют медленно.

Для отопительных приборов помимо экономических, архитектурно-строительных, санитарно-гигиенических и производственно-монтажных требований добавляются еще теплотехнические требования. От прибора требуется передача от теплоносителя через единицу площади в помещение наибольшего теплового потока. Для выполнения этого требования прибор должен обладать повышенным значением коэффициента теплоотдачи Kпр, по сравнению со значением одного из типов секционных радиаторов, который принят за эталон (радиатор чугунный типа Н-136).

В табл. 20 приведены теплотехнические показатели и условными знаками отмечены другие показатели приборов. Знаком «плюс» отмечены положительные показатели приборов, знаком «минус» - отрицательные. Два плюса указывают на показатели, определяющие основное преимущество какого-либо вида приборов.

Таблица 20

Конструкция отопительных приборов

Радиатором секционным называется прибор конвективно-радиационного типа, состоящий из отдельных колончатых элементов - секций с каналами круглой или элипсообразной формы. Такой радиатор отдает в помещение радиацией около 25% общего теплового потока, передаваемого от теплоносителя (остальные 75% - конвекцией) и именуется «радиатором» лишь по традиции.

Секции радиатора отливают из серого чугуна, их можно компоновать в приборы различной площади. Секции соединяют на ниппелях с прокладками из картона, резины или паронита.

Известны разнообразные конструкции одно-, двух-, и многоколонных секций различной высоты, но наиболее распространены двухколончатые секции (рис. 27) средних (монтажная высота hм = 500 мм) радиаторов.


Рис. 27. Двухколончатая секция радиатора: hп - полная высота; hм - монтажная высота (строительная); b - строительная глубина

Производство чугунных радиаторов трудоемко, монтаж затруднен из-за громоздкости и значительной массы собранных приборов. Радиаторы не могут считаться удовлетворяющими санитарно-гигиеническим требованиям, так как очистка от пыли межсекционного пространства сложна. Эти приборы обладают значительной тепловой инерцией. Наконец, следует отметить несоответствие их внешнего вида интерьеру помещений в зданиях современной архитектуры. Указанные недостатки радиаторов вызывают необходимость их замены более легкими и менее металлоемкими приборами. Не смотря на это чугунные радиаторы - это наиболее распространенный в настоящее время отопительный прибор.

В настоящее время промышленностью выпускается чугунные секционные радиаторы со строительной глубиной 90мм и 140 мм (типа «Москва» - сокращенно М, типа IСтандартI - МС и другие). На рис. 28 приведены конструкции выпускаемых чугунных радиаторов.

Рис. 28. Чугунные радиаторы: а - М-140-АО (М-140-АО-300); б - М-140; в - РД-90

Все чугунные радиаторы рассчитаны на рабочее давление до 6 кгс/см2. Измерителями поверхности нагрева нагревательных приборов служат физический показатель - квадратный метр поверхности нагрева и теплотехнический показатель - эквивалентный квадратный метр (экм2). Эквивалентным квадратным метром называется площадь нагревательного прибора, отдающая в 1 час 435 ккал тепла при разности средней температуры теплоносителя и воздуха 64,5° С и расходе воды в этом приборе 17,4 кг/час по схеме движения теплоносителя сверху вниз.

Технические характеристики радиаторов приведены в табл. 21.
Поверхность нагрева чугунных радиаторов и ребристых труб
Таблица 21

Продолжение табл. 21


Стальные панельные радиаторы состоят из двух отштампованных листов, образующих горизонтальные коллекторы, соединенные вертикальными колоннами (колончатая форма), или горизонтальные параллельно и последователвно соединенные каналы (змеевиковая форма). Змеевик можно выполнить из стальной трубы и приварить к одному профилированному стальному листу; такой прибор называется листотрубным.

Рис. 29. Чугунные радиаторы

Рис. 30. Чугунные радиаторы

Рис. 31. Чугунные радиаторы

Рис. 32. Чугунные радиаторы

Рис. 33. Чугунные радиаторы

Рис. 34. Схемы каналов для теплоносителя в панельных радиаторах: а - колончатой формы; б - змеевиковый двухходовой, в - змеевиковый четырехходовой

Стальные панельные радиаторы отличаются от чугунных меньшей массой и тепловой инерцией. При уменьшении массы примерно в 2,5 раза показатель теплопередачи не хуже чем у чугунных радиаторов. Их внешний вид удовлетворяет архитектурно-строительным требованиям, стальные панели легко очищаются от пыли.

Стальные панельные радиаторы имеют относительно небольшую площадь нагревательной поверхности, из-за чего иногда приходится прибегать к установке панельных радиаторов попарно (в два ряда на расстоянии 40 мм).

В табл. 22 приведены характеристики выпускаемых стальных штампованных радиаторных панелей.

Таблица 22


Продолжение табл. 22

Продолжение табл. 22


Бетонные панельные радиаторы (отопительные панели) (рис. 35) могут иметь бетонированные нагревательные элементы змеевиковой или регистровой формы из стальных труб диаметром 15-20 мм, а также бетонные, стеклянные или пластмассовые каналы различной конфигурации.

Рис. 35. Бетонная нагревательная панель

Бетонные панели обладают коэффициентом теплопередачи, близким к показателям других приборов с гладкой поверхностью, а также высоким тепловым напряжением металла. Приборы, особенно совмещенного типа, отвечают строгим санитарно-гигиеническим, архитектурно-строительным и другим требованиям. К недостаткам совмещенных бетонных панелей относятся трудности ремонта, большая тепловая инерция, усложняющая регулирование тепло-подачи в помещения. Недостатками приборов приставного типа являются повышенные затраты ручного труда при их изготовлении и монтаже, сокращение полезной площади пола помещения. Увеличиваются также теплопотери через дополнительно прогреваемые наружные ограждения зданий.

Гладкотрубным называют прибор из нескольких соединенных вместе стальных труб, образующих каналы для теплоносителя змеевиковой или регистровой формы (рис. 36).

Рис. 36. Формы соединения стальных труб в гладкотрубные отопительные приборы: а - змеевиковая форма; б - регистровая форма: 1 - нитка; 2 - колонка

В змеевике трубы соединены последовательно по направлению движения теплоносителя, что увеличивает скорость его движения и гидравлическое сопротивление прибора. При параллельном соединении труб в регистре поток теплоносителя делится, скорость его движения и гидравлическое сопротивление прибора уменьшается.

Приборы сваривают из труб Ду = 32-100мм, расположенных друг от друга на расстоянии на 50 мм превышающем их диаметр, что уменьшает взаимное облучение и соответственно увеличивает теплоотдачу в помещение. Гладкотрубные приборы обладают самым высоким коэффициентом теплопередачи, их пылесобирающая поверхность невелика и они легко очищаются.

Вместе с тем гладкотрубные приборы тяжелы и громоздки, занимают немало места, увеличивают расход стали в системах отопления, имеют непривлекательный внешний вид. Их применяют в редких случаях, когда не могут быть использованы приборы других видов (например, для отопления теплиц).

Характеристики гладкотрубных регистров приведены в табл. 23.

Таблица 23


Конвектор - это прибор конвективного типа, состоящий из двух элементов - ребристого нагревателя и кожуха (рис. 37).


Рис. 37. Схемы конвекторов: а - с кожухом; б - без кожуха: 1 - нагревательный элемент; 2 - кожух; 3 - воздушный клапан; 4 - оребрение труб

Кожух декорирует нагреватель и способствует повышению теплопередачи благодаря увеличению подвижности воздуха у поверхности нагревателя. Конвектор с кожухом передает в помещение конвекцией до 90-95% всего теплового потока (табл. 24).

Таблица 24


Прибор, в котором функции кожуха выполняет оребрение нагревателя, называют конвектором без кожуха. Нагреватель выполняют из стали, чугуна, алюминия и других металлов, кожух - из листовых материалов (стали, асбестоцемента и др.)

Конвекторы обладают сравнительно низким коэффициентом теплопередачи. Тем не менее они находят широкое применение. Это объясняется простотой изготовления, монтажа и эксплуатации, а также малой металлоемкостью.

Основные технические характеристики конвекторов приведены в табл. 25.

Таблица 25


Продолжение табл. 25

Продолжение табл. 25

Примечание: 1. При многорядной установке плинтусных конвекторов КП вводится поправка на поверхность нагрева в зависимости от числа рядов по вертикали и горизонтали: при двухрядной установке по вертикали 0,97, трехрядной - 0,94, четырехрядной - 0,91; для двух рядов по горизонтали поправка 0,97. 2. Показатели концевых и проходных моделей конвекторов одинаковы. Проходные конвекторы имеют индекс А (например Нн-5А, Н-7А).

Ребристой трубой называют прибор конвективного типа, представляющий собой фланцевую чугунную трубу, наружная поверхность которой покрыта совместно отлитыми тонкими ребрами (рис 33).

Площадь внешней поверхности ребристой трубы во много раз больше, чем площадь поверхности гладкой трубы того же диаметра и длины. Это придает отопительному прибору особую компактность. Кроме того, пониженная температура поверхности ребер при использовании высокотемпературного теплоносителя, сравнительная простота изготовления и невысокая стоимость обуславливают применение этого малоэффективного в теплотехническом отношении, тяжелого прибора. К недостаткам ребристых труб относятся также несовременный внешний вид, малая механическая прочность ребер и трудность очистки от пыли. Ребристые трубы применяют как правило во вспомогательных помещениях (котельных, складских помещениях, гаражах и т. д.). Промышленность выпускает круглые ребристые чугунные трубы длиной 1-2м. Их устанавливают горизонтально в несколько ярусов и соединяют по змеевиковой схеме на болтах с помощью «калачей» - фланцевых чугунных двойных отводов и контрфланцев.

Для сравнительной теплотехнической характеристики основных отопительных приборов в табл. 25 приведена относительная теплоотдача приборов длиной 1,0 м в равных тепло-гидравлических условиях при использовании в качестве теплоносителя -воды (теплоотдача чугунного секционного радиатора глубиной 140мм принята за 100%).

Как видно, высокой теплоотдачей на 1.0 м длины отличаются секционные радиаторы и конвекторы с кожухом; наименьшую теплоотдачу имеют конвекторы без кожуха и особенно одиночные гладкие трубы.

Относительная теплоотдача отопительных приборов длиной 1,0 м Таблица 26

Выбор и размещение отопительных приборов

При выборе вида и типа отопительного прибора учитывают назначение, архитектурную планировку и особенности теплового режима помещения, место и длительность пребывания людей, вид системы отопления, технико-экономические и санитарно-гигиенические показатели прибора.


Рис. 38. Чугунная ребристая труба с круглыми ребрами: 1 - канал для теплоносителя; 2 - ребра; 3 - фланец

Для создания благоприятного теплового режима выбирают приборы, обеспечивающие равномерное обогревание помещений.

Металлические отопительные приборы устанавливают преимущественно под световыми проемами, причем под окнами длина прибора желательна не менее 50-75% длины проема, под витринами и витражами приборы располагают по всей их длине. При размещении приборов под окнами {рис. 39а) вертикальные оси прибора и оконного проема должны совпадать (допускается отклонение не более 50мм).

Приборы, расположенные у наружных ограждений, способствуют повышению температуры внутренней поверхности в нижней части наружной стены и окна, что уменьшает радиационное охлаждение людей. Восходящие потоки теплого воздуха, создаваемые приборами, препятствуют (если нет подоконников, перекрывающих приборы), попаданию охлажденного воздуха в рабочую зону {рис. 40а). В южных районах с короткой теплой зимой, а также при кратковременном пребывании людей отопительные приборы допустимо устанавливать у внутренних стен помещений {рис. 39б). При этом сокращается число стояков и протяженность теплопроводов и повышается теплопередача приборов (примерно на 7-9%), но возникает неблагоприятное для здоровья людей движение воздуха с пониженной температурой у пола помещения (рис. 40в).

Рис. 39. Размещение отопительных приборов в помещениях (планы): а - под окнами; б - у внутренних стен; п - отопительный прибор

Рис. 40. Схемы циркуляции воздуха в помещениях (разрезы) при разном расположении отопительных приборов: а-под окнами без подоконника; б - под окнами с подоконником в - у внутренней стены; п - отопительный прибор


Рис. 41. Расположение под окном помещения отопительного прибора: а - длинного и низкого (желательно); б - высокого и короткого (нежелательно)

Вертикальные отопительные приборы устанавливают возможно ближе к полу помещений. При значительном подъеме прибора над уровнем пола воздух у поверхности пола может переохлаждаться, так как циркуляционные потоки нагреваемого воздуха, замыкаясь на уровне размещения прибора, не захватывают и не прогревают в этом случае нижнюю часть помещения.

Чем ниже и длиннее отопительный прибор (рис. 41а) тем ровнее температура помещения и лучше прогревается весь объем воздуха. Высокий и короткий прибор (рис. 41б) вызывает активный подъем струи теплого воздуха, что приводит к перегреванию верхней зоны помещения и опусканию охлажденного воздуха по обеим сторонам такого прибора в рабочую зону.

Способность высокого отопительного прибора вызывать активный восходящий поток теплого воздуха можно использовать для отопления помещений увеличенной высоты.

Вертикальные металлические приборы, как правило, размещают открыто у стены. Однако возможна установка их под подоконниками, в стенных нишах, со специальным ограждением и декорированием. На рис. 42 показано несколько приемов установки отопительных приборов в помещениях.

Рис. 42. Размещение отопительных приборов-а - в декоративном шкафу; б - в глубокой нише; в - в специальном укрытии; г - за щитом; д - в два яруса

Укрытие прибора декоративным шкафом, имеющим две щели высотой до 100 мм (рис. 42а), уменьшает теплопередачу прибора на 12% по сравнению с открытой его установкой у глухой стены. Для передачи в помещение заданного теплового потока, площадь нагревательной поверхности такого прибора должна быть увеличена на 12%. Размещение прибора в глубокой открытой нише (рис. 42б) или одного над другим в два яруса (рис. 42д) уменьшает теплопередачу на 5%. Возможна однако, скрытая установка приборов, при которой теплопередача не изменяется (рис. 42в) или даже увеличивается на 10% (рис. 42г). В этих случаях не требуется увеличивать площадь нагревательной поверхности прибора или даже можно её уменьшить.

Расчет площади, размера и числа отопительных приборов

Площадь теплоотдающей поверхности отопительного прибора определяют в зависимости от принятого вида прибора, его расположения в помещении и схемы присоединения к трубам. В жилых помещениях число приборов, а следовательно, и необходимую теплоотдачу каждого прибора устанавливают, как правило, по числу оконных проемов. В угловых помещениях добавляют еще один прибор, помещаемый в глухой торцевой стене.

Задача расчета заключается прежде всего в определении площади внешней нагревательной поверхности прибора, обеспечивающей в расчетных условиях необходимый тепловой поток от теплоносителя в помещение. Затем по каталогу приборов, исходя из расчетной площади, подбирается ближайший торговый размер прибора (число секций или марка радиатора (длина конвектора или ребристой трубы). Число секций чугунных радиаторов определяют по формуле: N=Fpb4/f1b3;

где f1- площадь одной секции, м2; типа радиатора, принятого к установке в помещении; Ь4 - поправочный коэффициент, учитывающий способ установки радиатора в помещении; Ь3 - поправочный коэффициент, учитывающий число секций в одном радиаторе и вычисляется по формуле: b3=0,97+0,06/Fp;

где Fp - расчетная площадь отопительного прибора, м2.

Правильный выбор, грамотное проектирование и качественный монтаж системы отопления – залог тепла и уюта в доме в течение всего отопительного сезона. Обогрев должен быть качественным, надежным, безопасным, экономичным. Чтобы правильно подобрать систему отопления, необходимо ознакомиться с их видами, особенностями монтажа и работы нагревательных приборов. Важно также учитывать доступность и стоимость топлива.

Типы современных систем отопления

Системой отопления называют комплекс элементов, используемых для обогрева помещения: источник тепла, трубопроводы, нагревательные приборы. Тепло передается с помощью теплоносителя – жидкой или газообразной среды: воды, воздуха, пара, продуктов сгорания топлива, антифриза.

Системы отопления зданий необходимо подбирать так, чтобы добиться максимально качественного обогрева с сохранением комфортной для человека влажности воздуха. В зависимости от вида теплоносителя различают такие системы:

  • воздушные;
  • водяные;
  • паровые;
  • электрические;
  • комбинированные (смешанные).

Нагревательные приборы системы отопления бывают:

  • конвективные;
  • лучистые;
  • комбинированные (конвективно-лучистые).

Схема двухтрубной отопительной системы с принудительной циркуляцией

В качестве источника тепла могут использоваться:

  • уголь;
  • дрова;
  • электричество;
  • брикеты – торфяные или дровяные;
  • энергия солнца или других альтернативных источников.

Воздух нагревается непосредственно от источника тепла без использования промежуточного жидкого или газообразного теплоносителя. Системы применяют для обогрева частных домов небольшой площади (до 100 м.кв.). Установка отопления этого типа возможна как при возведении здания, так и при реконструкции уже существующего. В качестве источника тепла служит котел, ТЭН или газовая горелка. Особенность системы заключается в том, что она является не только отопительной, но и вентиляционной, поскольку нагревается внутренний воздух в помещении и свежий, поступающий снаружи. Воздушные потоки поступают через специальную заборную решетку, фильтруются, нагреваются в теплообменнике, после чего проходят через воздуховоды и распределяются в помещении.

Регулировка температуры и степени вентиляции осуществляется с помощью термостатов. Современные термостаты позволяют заранее задавать программу изменений температуры в зависимости от времени суток. Системы функционируют и в режиме кондиционирования. В этом случае воздушные потоки направляются через охладители. Если нет необходимости в обогреве или охлаждении помещения, система работает как вентиляционная.

Схема устройства воздушного отопления в частном доме

Установка воздушного отопления обходится относительно дорого, но его преимущество в том, что нет необходимости прогревать промежуточный теплоноситель и радиаторы, за счет чего экономия топлива составляет не менее 15%.

Система не замерзает, быстро реагирует на изменения температурного режима и прогревает помещения. Благодаря фильтрам воздух в помещения поступает уже очищенным, что снижает количество болезнетворных бактерий и способствует созданию оптимальных условий для поддержания здоровья проживающих в доме людей.

Недостаток воздушного отопления – пересушивание воздуха, выжигание кислорода. Проблема легко решается, если установить специальный увлажнитель. Система может быть усовершенствована с целью экономии и создания более комфортного микроклимата. Так, рекуператор подогревает поступающий воздух, за счет выводимого наружу. Это позволяет сократить энергозатраты на его подогрев.

Возможна дополнительная очистка и дезинфекция воздуха. Для этого, помимо механического фильтра, входящего в комплектацию, устанавливают электростатические фильтры тонкой очистки и ультрафиолетовые лампы.

Воздушное отопление с дополнительными приборами

Водяное отопление

Это замкнутая система отопления, в качестве теплоносителя в ней используется вода или антифриз. Вода подается по трубам от источника тепла к радиаторам отопления. В централизованных системах температура регулируется на тепловом пункте, а в индивидуальных – автоматически (с помощью термостатов) или вручную (кранами).

Виды водяных систем

В зависимости от типа присоединения нагревательных приборов системы делят на:

  • однотрубные,
  • двухтрубные,
  • бифилярные (двухтопочные).

По способу разводки различают:

  • верхнюю;
  • нижнюю;
  • вертикальную;
  • горизонтальную системы отопления.

В однотрубных системах подключение отопительных приборов последовательное. Чтобы компенсировать потерю тепла, которая происходит при последовательном прохождении воды из одного радиатора в другой, применяют отопительные приборы с различной поверхностью теплоотдачи. Например, могут быть использованы чугунные батареи с большим количеством секций. В двухтрубных применяют схему параллельного подключения, что позволяет устанавливать одинаковые радиаторы.

Гидравлический режим может быть постоянным и изменяемым. В бифилярных системах отопительные приборы соединены последовательно, как в однотрубных, но условия теплопередачи радиаторов такие же, как в двухтрубных. В качестве отопительных приборов используются конвекторы, стальные или чугунные радиаторы.

Схема двухтрубного водяного отопления загородного дома

Преимущества и недостатки

Водяной обогрев широко распространен благодаря доступности теплоносителя. Еще одно преимущество – возможность обустроить систему отопления своими руками, что немаловажно для наших соотечественников, привыкших полагаться только на собственные силы. Впрочем, если бюджет позволяет не экономить, проектирование и монтаж отопления лучше доверить специалистам.

Это избавит от многих проблем в будущем – протечек, прорывов и т.п. Недостатки – замерзание системы при отключении, длительное время прогрева помещений. Особые требования предъявляют к теплоносителю. Вода в системах должна быть без посторонних примесей, с минимальным содержанием солей.

Для разогрева теплоносителя может использоваться котел любого типа: на твердом, жидком топливе, газе или электричестве. Чаще всего используют газовые котлы, что предполагает подключение к магистрали. Если такой возможности нет, то обычно устанавливают твердотопливные котлы. Они более экономичны, чем конструкции, работающие на электричестве или жидком топливе.

Обратите внимание! Специалисты рекомендуют подбирать котел из расчета мощности 1 кВт на 10 м.кв. Эти показатели – ориентировочные. Если высота потолков более 3 м, в доме большие окна, есть дополнительные потребители или помещения недостаточно хорошо теплоизолированы, все эти нюансы обязательно нужно учесть в расчетах.

Закрытая система отопления дома

В соответствии со СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование», использование паровых систем запрещено в жилых и общественных зданиях. Причина – небезопасность этого вида обогрева помещений. Отопительные приборы разогреваются почти до 100°C, что может стать причиной ожогов.

Монтаж сложный, требует навыков и специальных знаний, при эксплуатации возникают сложности с регулированием теплоотдачи, при заполнении системы паром возможен шум. На сегодня паровое отопление используют ограничено: в производственных и нежилых помещениях, в пешеходных переходах, тепловых пунктах. Его преимущества – относительная дешевизна, низкая инерционность, компактность отопительных элементов, высокая теплоотдача, отсутствие теплопотерь. Все это обусловило популярность парового обогрева до середины ХХ века, позже его вытеснило водяное. Однако на предприятиях, где пар используют для производственных нужд, он все еще широко применяется и для обогрева помещений.

Котел для парового отопления

Электрическое отопление

Это надежный и наиболее простой в эксплуатации вид отопления. Если площадь дома не более 100 м, электричество – неплохой вариант, однако обогрев большей площади экономически не выгоден.

Электрическое отопление может использоваться как дополнительное на случай отключения или ремонта основной системы. Также это хорошее решение для загородных домов, в которых владельцы проживают лишь периодически. Как дополнительные источники тепла применяются электрические тепловентиляторы, инфракрасные и масляные обогреватели.

В качестве отопительных приборов используются конвекторы, электрокамины, электрокотлы, силовые кабели теплого пола. Каждый тип имеет свои ограничения. Так, конвекторы неравномерно прогревают помещения. Электрокамины больше пригодны в качестве декоративного элемента, а работа электрокотлов требует значительных энергозатрат. Теплый пол монтируют с заблаговременным учетом плана расстановки мебели, потому что при ее перемещении возможно повреждение силового кабеля.

Схема традиционного и электрического отопления зданий

Инновационные системы отопления

Отдельно следует упомянуть об инновационных системах отопления, приобретающих все большую популярность. Наиболее распространены:

  • инфракрасные полы;
  • тепловые насосы;
  • солнечные коллекторы.

Инфракрасные полы

Эти системы обогрева лишь недавно появились на рынке, но уже стали довольно популярными благодаря эффективности и большей экономичности, чем привычное электрическое отопление. Теплые полы работают от электросети, их устанавливают в стяжку или плиточный клей. Нагревательные элементы (карбон, графит) излучают волны инфракрасного спектра, которые проходят через напольное покрытие, разогревают тела людей и предметы, от них в свою очередь нагревается воздух.

Саморегулирующиеся карбоновые маты и пленку можно монтировать под ножками мебели, не боясь повреждений. «Умные» полы регулируют температуру благодаря особому свойству нагревательных элементов: при перегреве расстояние между частицами увеличивается, растет сопротивление – и температура снижается. Энергозатраты относительно невелики. При включении инфракрасных полов потребляемая мощность составляет порядка 116 Ватт на метр погонный, после прогрева снижается до 87 Ватт. Контроль за температурой обеспечивается за счет термогуляторов, что снижает затраты энергии на 15-30%.

Инфракрасные карбоновые маты удобны, надежны, экономичны, просты в монтаже

Тепловые насосы

Это устройства для переноса тепловой энергии от источника к теплоносителю. Сама по себе идея теплонасосной системы не нова, ее предложил лорд Кельвин еще в 1852 г.

Принцип работы: геотермальный тепловой насос забирает тепло из окружающей среды и передает ее в систему отопления. Системы также могут работать и для охлаждения зданий.

Принцип работы теплового насоса

Различают насосы с открытым и закрытым циклом. В первом случае установки забирают воду из подземного потока, передают в систему обогрева, отбирают тепловую энергию и возвращают к месту забора. Во втором – по специальным трубам в водоеме прокачивается теплоноситель, который передает/забирает тепло у воды. Насос может использовать тепловую энергию воды, земли, воздуха.

Преимущество систем – можно устанавливать в домах, не подключенных к газоснабжению. Тепловые насосы сложны и дороги в установке, зато позволяют экономить на энергозатратах при эксплуатации.

Тепловой насос предназначен для использования тепла окружающей среды в системах обогрева

Солнечные коллекторы

Солнечные установки представляют собой системы для сбора тепловой энергии Солнца и передачи ее теплоносителю

В качестве теплоносителя может быть использованы вода, масло или антифриз. В конструкции предусмотрены дополнительные электрические нагреватели, которые включаются, если КПД солнечной установки снижается. Существует два основных типа коллекторов – плоские и вакуумные. В плоских установлен абсорбер с прозрачным покрытием и теплоизоляцией. В вакуумных это покрытие многослойное, в герметично закрытых коллекторах создается вакуум. Это позволяет нагревать теплоноситель до 250-300 градусов, в то время как плоские установки способны нагреть его лишь до 200 градусов. К преимуществам установок следует отнести простоту монтажа, небольшую массу, потенциально высокую эффективность.

Впрочем, есть одно «но»: эффективность работы солнечного коллектора слишком сильно зависит от разности температур.

Солнечный коллектор в системе горячего водоснабжения и отопления дома Сравнение систем отопления показывает, что не существует идеального способа обогрева

Наши соотечественники по-прежнему чаще всего отдают предпочтение водяному отоплению. Обычно сомнения возникают лишь в том, какой конкретно источник тепла выбрать, как лучше осуществить подключение котла к системе отопления и т.п. И все же готовых рецептов, подходящих абсолютно всем, не существует. Необходимо тщательно взвесить плюсы и минусы, учесть особенности здания, для которого подбирается система. Если есть сомнения, следует проконсультироваться со специалистом.

Видео: виды систем отопления

Отопительный прибор - это элемент системы отопления, служащий для передачи тепла от теплоносителя к воздуху отапливаемого помещения.

1. Регистры из гладких труб представляют собой пучок труб, расположенный в два ряда и объединенный с двух сторон двумя трубами - коллекторами, снабженных штуцерами для подачи и отвода теплоносителя.

Применяют регистры из гладких труб в помещениях, где предъявляются повышенные санитарно-технические и гигиенические требования, а также в производственных зданиях, повышенной степенью пожароопасности, где недопустимо большое скопление пыли. Приборы гигиеничны, легко очищаются от пыли и грязи. Но не экономичны, металлоемки. Расчетная поверхность нагрева 1м гладкой трубы.

2. Чугунные радиаторы . Блок чугунных радиаторов состоит из секций отлитых из чугуна соединенных между собой ниппелями. Они бывают 1-2 и много канальными. В России в основном 2-х канальные радиаторы. По монтажной высоте радиаторы подразделяют на высокие 1000 мм, средние - 500 мм и низкие 300 мм.

У радиаторов М-140-АО имеется межколонное оребрение, что увеличивает их теплоотдачу, но снижает эстетические и гигиенические требования.

Чугунные радиаторы имеют ряд преимуществ. Это:

1. Коррозионностойкость.

2. Отлаженность технологии изготовления.

3. Простота изменения мощности прибора путем изменения количества секций.

Недостатками этих типов отопительных приборов являются:

1. Большой расход металла.

2. Трудоемкость изготовления и монтажа.

3. Их производство приводит к загрязнению окружающей среды.

3. Ребристые трубы . Представляют собой отлитую из чугуна трубу с круглыми ребрами. Ребра увеличивают поверхность прибора и снижают температуру поверхности.

Ребристые трубы применяют, в основном, на промышленных предприятиях.

Достоинства:

1. Дешевые нагревательные приборы.

2. Большая поверхность нагрева.

Недостатки:

Не удовлетворяют санитарно-гигиеническим требованиям (трудно очищаются от пыли).

4. Стальные штампованные радиаторы . Представляют собой два шпатлеванных стальных места, соединенных между собой контактной сваркой.

Различают: колончатые радиаторы РСВ 1 и змеевиковые радиаторы РСГ 2.

Колончатые радиаторы : образуют ряд параллельных каналов, объединенных между собой сверху и снизу горизонтальными коллекторами.

Змеевиковые радиаторы образуют ряд горизонтальных каналов для прохода теплоносителя.

Стальные пластиничные радиаторы изготавливаются однорядными и двухрядными. Двухрядные изготавливаются тех же типоразмеров, что и однорядные, но состоят из двух пластин.

Достоинства:

1. Маленькая масса прибора.

2. Дешевле чугунных на 20-30%.

3. Меньше затраты на транспортирование и монтаж.

4. Удобны в монтаже и отвечают санитарно-гигиеническим требованиям.

Недостатки:

1. Небольшая теплоотдача.

2. Требуется специальная обработка теплофикационной воды, так как обычная вода корродирует с металлом. Нашли широкое применение в жилье в общественных зданиях. В связи с удорожанием металла выпуск ограничен. Высокая стоимость.

5. Конвекторы. Представляют собой ряд стальных труб, по которым перемещается теплоноситель и насаженных на них стальных пластин оребрения.

Конвекторы бывают с кожухом или без кожуха. Их изготавливают различных типов: Например: Конвекторы «Комфорт». Их подразделяют на 3 типа: настенные (навешиваются на стену h=210 м), островные (устанавливаются на полу) и лестничные (встраиваются в строительные конструкцию).

Конвекторы изготавливают концевые и проходные. Конвекторы применяют для отопления зданий различного назначения. Используют в основном в средней полосе России.

Неметаллические отопительные приборы

6. Керамические и фарфоровые радиаторы . Представляют собой панель, вылитую из фарфора или керамики с вертикальными или горизонтальными каналами.

Применяют такие радиаторы в помещениях, предъявляющих повышенные санитарно-гигиенические требования к отопительным приборам. Применяются такие приборы очень редко. Они очень дороги, процесс изготовления трудоемок, недолговечны, подвержены механическому воздействию. Очень сложно осуществить подключение этих радиаторов к металлическим трубопроводам.

7. Бетонные отопительные панели . Представляют собой бетонные плиты с заделанными в них змеевиками из труб. Толщина 40-50 мм. Они бывают: подоконные и перегородочные.

Отопительные панели могут быть приставными и встроенными в конструкцию стен и перегородок. Бетонные панели отвечают самым строгим санитарно-гигиеническим требованиям, архитектурно-строительным требованиям.

Недостатки: трудность ремонта, большая тепловая инерция, усложняющая регулирование теплоотдачи, увеличение теплопотерь через дополнительно обогреваемые наружные конструкции зданий. Применяют преимущественно в лечебных учреждениях в операционных и в родильных домах в детских комнатах.

Сантехнические отопительные приборы должны удовлетворят теплотехническим, санитарно-гигиеническим и эстетическим требованиям.

Теплотехническая оценка отопительных приборов определяется его коэффициентом теплоотдаче.

Санитарно-гигиеническая оценка - характеризуется конструктивным решением прибора, облегчающим содержание его в чистоте.

Температура внешней поверхности отопительного прибора должна удовлетворять санитарно-гигиеническим требованиям. Во избежание интенсивного пригорания пыли эта температура не должна превышать для помещений жилых и общественных зданий 95 о С, для лечебных и детских учреждений 85 о С.

Эстетическая оценка - отопительный прибор не должен портить внутреннего вида помещения, не должен занимать много места.

Нагревательными приборами систем центрального отопления называют устройства для передачи тепла от теплоносителя отапливаемому помещению. Нагреватель­ные приборы должны наилучшим образом передавать тепло от теплоносителя в помещение, обеспечивать ком­фортность тепловой обстановки в помещении, не ухуд­шая его интерьера при наименьших затратах средств и материалов.

Виды и конструкции нагревательных приборов могут быть самыми разнообразными. Приборы выполняют из чугуна, стали, керамики, стекла, в виде панелей из бето­на с заложенными в них трубчатыми нагревательными элементами и пр.

Основные виды нагревательных приборов – это ра­диаторы, ребристые трубы, конвекторы и отопительные панели.

Простейшим является нагревательный прибор из глад­ких стальных труб . Обычно он выполняется в виде зме­евика или регистра. Прибор имеет высокий коэффициент теплопередачи, выдерживает высокое давление теплоно­сителя. Однако приборы из гладких труб дороги и зани­мают много места. Они применяются в помещениях со значительными выделениями пыли, для обогрева свето­вых фонарей промышленных зданий и т. д.

Наибольшее распространение из нагревательных приборов получили радиаторы . Их различные типы от­личаются друг от друга габаритами и формой. Радиато­ры собираются из секций, что позволяет собирать при­боры разной площади. Обычно секции отливаются из чугуна, но могут быть стальными, керамическими, фар­форовыми и др.

Довольно широкое распространение в системах отоп­ления получили чугунные ребристые трубы . Ребра на поверхности трубы увеличивают площадь теплоотдающей поверхности, но снижают гигиенические качества прибора (скапливается пыль, которую трудно убирать) и придают ему грубый внешний вид.

Конвекторы представляют собой стальные трубы с оребрением из листовой стали. Наиболее совершен­ным среди конвекторов является конвектор в кожухе, выполненном из стального листа. Прибор снабжен кол­паком для регулирования теплоотдачи. Между оребрен­ными поверхностями прибора и кожухом под влиянием гравитационного давления возникает интенсивная цир­куляция воздуха. Это увеличивает теплосъем с оребрен­ной поверхности на 20 % и более. Конвекторы в кожухе компактны и имеют хороший внешний вид. В некоторых конструкциях конвекторы снабжаются вентилятором специального типа, обеспечивающим интенсивное дви­жение воздуха. Искусственное побуждение движения воздуха значительно увеличивает теплосъем с прибора. Некоторый недостаток конвекторов состоит в необходи­мости и трудности очистки от пыли.

Бетонные отопительные панели представляют собой плиты с заделанными в них змеевиками из стальных труб. Такие панели располагают обычно в конструкциях ограждений помещений. Иногда их свободно устанавли­вают около стен.

В настоящее время для отопления больших промыш­ленных цехов получили распространение подвесные па­нели с отражательными экранами .

Применение панелей для отопления зданий удовле­творяет требованиям полносборного строительства и по­зволяет экономить металл, расходуемый на отопитель­ные приборы. К недостаткам панельного отопления относят: большую тепловую инерцию, осложняющую регулирование теплоотдачи; невозможность изменения поверхности нагрева; опасность засорения труб и слож­ность его устранения; сложность ремонта систем; воз­можность появления внутренней коррозии и, вследствие этого, нарушение гидравлической плотности труб.