Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Связи в металлическом каркасе. Связи по покрытию производственных зданий. Продольные горизонтальные связи по нижним поясам ригелей

Связи в металлическом каркасе. Связи по покрытию производственных зданий. Продольные горизонтальные связи по нижним поясам ригелей

Конструкция связей, устанавливаемых в покрытии, зависит от схемы и материала каркаса, типа покрытия, высоты здания, вида крана, его грузоподъемности и режима работы.
Вертикальные связи между опорами железобетонных ферм или балок покрытия ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций связи располагают в каждом ряду колонн, а с такими конструкциями — только в крайних рядах колонн при шаге 6 м.

Вертикальные связи между опорами ферм или балок ставят не чаще, чем через один шаг. Их количество при длине температурного блока 60—72 At на каждый ряд колонн может быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. На рис. 69, а показаны четыре такие связи.

При наличии вертикальных связей между опорами ферм или балок покрытия или связей между колоннами (в зданиях без кранов) по верху колонн ст."шяг распорки (рис. 69, а, в).

В зданиях с шагом колонн в средних и крайних рядах 12 м предусматривают горизонатальные фермы в торцах - по две в каждом пролёте на температурный блок. Эти фермы ставят на уровне нижнего пояса стропильных ферм (рис. 69, в). В зданиях с подстропильными конструкциями в средних рядах колонн устраивают горизонтальные распорки в количестве 2—4 на один ряд колонн температурного блока (рис. 69, б).

Рис. 69. Связи в покрытиях при железобетонных фермах

В зданиях с мостовыми кранами тяжелого режима работы или при наличии оборудования, вызывающего колебания конструкций, по нижнему поясу стропильных ферм или балок в середине каждого пролета устанавливают распорки (тяжи) и вертикальные связи в двух крайних шагах температурного блока. Роль горизонтальных связей по верхнему поясу ферм или балок выполняют крупнопанельные плиты покрытия.

В пролетах с фонарями для обеспечения устойчивости верхнего пояса стропильных ферм устанавливают распорки (тяжи) по коньку ферм и горизонтальные связи по их верхнему поясу в пределах ширины фонаря в крайних (или вторых) шагах температурного блока.

В покрытиях с прогонами в крайних шагах температурных блоков по всей их ширине под прогонами устраивают горизонтальные связи крестовой схемы.
Вертикальные и горизонтальные связи делают в большинстве случаев из уголков и крепят к железобетонным конструкциям с помощью косынок (рис. 69, г, д). Тяжи изготовляют из круглой стали, а распорки, работающие на сжатие,— из железобетона.

Система связей покрытия в зданиях со стальным каркасом состоит из горизонтальных связей в плоскости нижних и верхних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по нижним поясам стропильных ферм располагают как поперек здания (поперечные горизонтальные), так и вдоль его (продольные горизонтальные). Поперечные горизонтальные связи по нижним поясам устанавливают у торцов и у температурных швов здания. При температурных блоках длиной 120—150 м и при кранах большой грузоподъемности предусматривают также промежуточные связе-вые фермы через каждые 60 м.
Продольные горизонтальные связи располагают по крайним панелям нижних поясов стропильных ферм и устраивают в зданиях с кранами Q>10T и в зданиях с подстропильными фермами.

В однопролетных зданиях такие связи располагают вдоль обоих рядов колонн, а в многопролетных — вдоль крайних рядов колонн и через ряд вдоль средних рядов (при кранах грузоподъемностью до 50 7) или более часто (при грузоподъемности кранов более 50 Т).
Вдоль средних рядов колонн при одинаковой высоте смежных пролетов продольные связи рекомендуется располагать с одной стороны колонн, а в мечтах ш"ропала высот — с обеих сторон ряда колонн.

Боковую жёсткость нижних поясов ферм, расположенных в промежутке между двумя поперечными связевыми фермами почивают специальными растяжками из уголков, закрепленными за узлы связевых ферм. Схема разбивки поперечных и продольных связей по нижним поясам ферм показана на рис. 70, а.

Горизонтальные поперечные связи по верхним поясам ферм обеспечивают устойчивость верхних поясов ферм из их плоскости, и ставят их в покрытиях с прогонами. В панельных покрытиях указанные связи предусматривают только в торцах здания и у температурных швов. В промежутках между поперечными связевыми фермами боковая устойчивость верхних поясов ферм обеспечивается прогонами, а на участках под фонарями — растяжками из уголков. Поперечные связи по верхним и нижним поясам ферм рекомендуется совмещать в плане.

Рис. 70. Связи в покрытиях при стальных фермах

При наличии подстропильных ферм в однопролетных покрытиях без прогонов и в многопролетных покрытиях, расположенных в одном уровне, предусматривают продольные горизонтальные связи в плоскости верхних поясов в одной из крайних панелей ферм. В случае перепада высот смежных пролетов предусматривают по одной продольной системе в каждом уровне.

Вертикальные связи покрытия располагают в плоскостях опорных стоек стропильных ферм, в плоскости коньковых стоек, для ферм пролетом до 30 м, а также в плоскости стоек, находящихся под узлом крепления наружных ног фонаря для ферм пролетом более 30 м. Вертикальные связи делают в виде ферм с параллельными поясами, имеющими высоту, равную высоте стоек, к которым связи крепят.

Связи по прогонам в виде ферм жесткости, распорок и тяжей обеспечивают проектное положение прогонов, повышают устойчивость и облегчают работу прогонов на скатную составляющую вертикальных нагрузок и воспринимают ветровые усилия.

Все типы связевых ферм выполняют из уголков с перекрестной решеткой, распорки также из уголков, а тяжи — из круглой стали. Крепят связи на черных болтах, в зданиях же с кранами большой грузоподъемности и тяжелого режима работы, а также в случае значительных усилий в элементах связей — на монтажной сварке и реже — на заклепках или чистых болтах. Некоторые детали крепления связей приведены на рис. 70, б — г.

СВЯЗИ в конструкциях - легкие конструктивные элементы в виде отдельных стержней или систем (ферм); предназначены для обеспечения пространственной устойчивости основных несущих систем (ферм, балок, рам и т. п.) и отдельных стержней; пространственной работы конструкции путем распределения нагрузки, приложенной к одному или нескольким элементам, на все сооружение; придания сооружению жесткости, необходимой для нормальных условий эксплуатации; для восприятия в отдельных случаях ветровых и инерционных (например, от кранов, поездов и т. п.) нагрузок, действующих на сооружения. Системы связей компонуются так, чтобы каждая из них выполняла несколько из перечисленных функций.

Для создания пространственной жесткости и устойчивости конструкций, состоящих из плоских элементов (ферм, балок), которые легко теряют устойчивость из своей плоскости, они соединяются по верхним и нижним поясам горизонтальными связями. Кроме того, по торцам, а при больших пролетах и в промежуточных сечениях ставятся вертикальные связи - диафрагмы. В результате образуется пространственная система, обладающая большой жесткостью при кручении и изгибе в поперечном направлении. Этот принцип обеспечения пространственной жесткости используется при проектировании многих сооружений.

В пролетных строениях балочных или арочных мостов две главные фермы соединяются горизонтальными системами связей по нижним и верхним поясам ферм. Эти системы связи образуют горизонтальные фермы, которые, помимо обеспечения жесткости, принимают участие в передаче ветровых нагрузок на опоры. Для получения необходимой жесткости при кручении ставятся поперечные связи, обеспечивающие неизменяемость поперечного сечения мостового бруса. В башнях квадратного или многоугольного сечения с этой же целью устраиваются горизонтальные диафрагмы.В покрытиях промышленных и общественных зданий с помощью горизонтальных и вертикальных связей две стропильные фермы соединяются в жесткий пространственный блок, с которым прогонами или тяжами (связями) соединяются остальные фермы покрытия. Такой блок обеспечивает жесткость и устойчивость всей системы покрытия.Наиболее развитую систему связей имеют стальные каркасы одноэтажных промышленных зданий.

Системы горизонтальных и вертикальных связей решетчатых ригелей рам (ферм) и фонарей обеспечивают общую жесткость шатра, закрепляют от потери устойчивости сжатые элементы конструкции (например, верхние пояса ферм), обеспечивают устойчивость плоских элементов в процессе монтажа и эксплуатации.Учет пространственной работы, обеспечиваемой соединением основных несущих конструкций системами связей, при расчете сооружений дает снижение веса конструкций. Так, например, учет пространственной работы поперечных рам каркасов одноэтажных промышленных зданий дает снижение расчетных величин моментов в колоннах на 25-30%. Разработана методика расчета пространственных систем пролетных строений балочных мостов. В обычных случаях связи не рассчитываются, а их сечения назначаются по предельной гибкости, устанавливаемой нормами.

Поперечная устойчивость каркаса деревянных зданий достигается путем защемления основных стоек в фундаментах при шарнирном соединении конструкции покрытия с этими стойками; применения рамных или арочных конструкций с шарнирным опиранием; создания жесткого диска покрытия, что используется в небольших зданиях.Продольная устойчивость здания обеспечивается постановкой (примерно через 20 м) специальной связи в плоскости каркасных стен и среднего ряда стоек. В качестве связей могут быть использованы и стеновые щиты (панели), соответствующим образом скрепленные с элементами каркаса.

Для обеспечения пространственной устойчивости плоскостных несущих деревянных конструкций ставятся соответствующие связи, принципиально аналогичные связи в металлических или железобетонных конструкциях.В арочных и рамных конструкциях, помимо обычного (как в балочных фермах) раскрепления сжатого верхнего пояса, предусматривается раскрепление нижнего пояса, имеющего, как правило, при односторонних нагрузках, сжатые участки. Это раскрепление осуществляется вертикальными связями, попарно соединяющими конструкции. Таким же образом обеспечивается устойчивость из плоскости нижних поясов в шпренгельных конструкциях. В качестве горизонтальных связей могут быть использованы полосы косого настила и щиты кровли. Пространственные деревянные конструкции в специальных связях не нуждаются.


Связи каркаса обеспечивают геометрическую неизменяемость и устойчивость элементов в продольном направлении, совместную пространственную работу конструкций каркаса, жесткость здания и удобство монтажа и состоят из двух основных систем: связей между колоннами и связей покрытия.

Связи между колоннами. Связи между колоннами (рис. 6.4) обеспечивают во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, воспринимают и передают на фундамент ветровые нагрузки, действующие на торец здания, и воздействия от продольного торможения мостовых кранов, а также обеспечивают устойчивость колонн из плоскости поперечных рам.

Система связей по колоннам состоит из надкрановых одноплоскостных связей V-образной схемы, располагаемых в плоскости продольных осей здания, и подкрановых двухплоскостных крестовой схемы, располагаемых в плоскостях ветвей колонны.

Подкрановые связи в каждом ряду колонн располагаются ближе к середине блока здания, чтобы обеспечить свободу температурных деформаций в обе стороны и снизить температурные напряжения в элементах каркаса. Количество связей (одна или две по длине блока) определяется их несущей способностью, длиной температурного отсека и наибольшим расстоянием L с от торца здания (температурного шва) до оси ближайшей вертикальной связи (см. табл. 6.1). При наличии двух вертикальных связей расстояние между ними в осях не должно превышать 40 – 50 м.

Надкрановые связи устанавливаются в крайних шагах колонн у торца здания или температурного блока, а также в местах, где предусматриваются вертикальные связи в плоскости опорных стоек стропильных ферм.

Промежуточные колонны (вне блоков связей) в уровне стропильных ферм раскрепляются распорками.

При большой высоте подкрановой части колонны целесообразна установка дополнительных горизонтальных распорок между колоннами, уменьшающих их расчетную длину из плоскости рамы (на рис. 6.4 показаны пунктиром).

Вертикальные связи по колоннам рассчитываются на крановые и ветровые нагрузки W , исходя из предположения работы на растяжение одного из раскосов крестовых подкрановых связей. При большой длине элементов, воспринимающих небольшие усилия, связи принимаются по предельной гибкости λ u = 200.

Элементы связей выполняются из горячекатанных уголков, распорки – из гнутых прямоугольных профилей.

Связи покрытия. Система связей покрытия состоит из горизонтальных и вертикальных связей, образующих жесткие блоки в торцах здания или температурного блока и при необходимости промежуточные блоки по длине отсека (рис. 6.5).

Горизонтальные связи в плоскости нижних поясов стропильных ферм проектируются двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм и растяжек (см. рис. 6.5, в г – при шаге 12 м). Связи второго типа состоят из поперечных связевых ферм и растяжек (см. рис. 6.5, д – при шаге ферм 6 м; см. рис. 6.5, е – при шаге ферм 12 м).


Рис. 6.4. Схема связей по колоннам


6.5. Связи покрытия


Рис. 6.5 (продолжение)


Поперечные связевые фермы по нижним поясам стропильных ферм предусматриваются в торцах здания или температурного (сейсмического) отсека (см. рис. 6.5, д , е ). Предусматривается также дополнительно одна связевая горизонтальная ферма в середине здания или отсека при их длине более 144 м в зданиях, возводимых в районах с расчетной температурой наружного воздуха –40 о С и выше, и при длине здания более 120 м в зданиях, возводимых в районах с расчетной температурой ниже –40 о С (см. рис. 6.5, в , г ). Тем самым уменьшаются поперечные перемещения пояса фермы, возникающие вследствие податливости связей. Поперечные горизонтальные связи в уровне нижних поясов ферм воспринимают ветровую нагрузку на торец здания, передаваемую верхними частями стоек фахверка, и вместе с поперечными горизонтальными связями по верхним поясам ферм и вертикальными связями между фермами обеспечивают пространственную жесткость покрытия.

Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм предусматриваются вдоль крайних рядов колонн в зданиях:

с мостовыми опорными кранами групп режимов работы 7К и 8К, требующими устройства галерей для прохода вдоль крановых путей;

с подстропильными фермами;

с расчетной сейсмичностью 7, 8 и 9 баллов;

с отметкой низа стропильных ферм свыше 18 м независимо от грузоподъемности кранов;

в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью свыше 50 т при шаге стропильных ферм 6 м и свыше 20 т при шаге ферм 12 м;

в однопролетных зданиях с кровлей по стальному профилированному настилу, оборудованных кранами грузоподъемностью свыше 16 т;

при шаге стропильных ферм 12 м с применением стоек продольного фахверка.

Поперечные горизонтальные связи в уровне верхних поясов стропильных ферм предусматриваются для обеспечения устойчивости поясов из плоскости ферм. Из-за решетки поперечных связей по верхним поясам ферм затрудняется использование решетчатых прогонов и поэтому поперечные связи, как правило, не применяются. В этом случае развязка ферм обеспечивается системой вертикальных связей между фермами.

В зданиях с кровлей по железобетонным плитам в уровне верхних поясов стропильных ферм предусматриваются распорки (см. рис. 6.5, а ). В зданиях с кровлей по стальному профилированному настилу распорки располагаются только в подфонарном пространстве, раскрепление ферм между собой осуществляется прогонами (см. рис. 6.5, б ); при расчетной сейсмичности 7, 8 и 9 баллов предусматриваются также поперечные связевые фермы или диафрагмы жесткости, устанавливаемые в торцах сейсмического отсека (см. рис. 6.5, ж – при шаге ферм 6 м; см. рис. 6.5, к – при шаге ферм 12 м), и дополнительно не менее одной при длине отсека более 96 м в зданиях с расчетной сейсмичностью 7 баллов и при длине отсека более 60 м в зданиях с расчетной сейсмичностью 8 и 9 баллов.

В диафрагмах жесткости профилированный настил, кроме основных функций ограждающих конструкций, выполняет функцию горизонтальных связей по верхним поясам стропильных ферм. Поперечные диафрагмы жесткости и горизонтальные связевые фермы воспринимают продольные расчетные горизонтальные нагрузки от покрытия.

В зданиях с фонарем в случае устройства промежуточной диафрагмы жесткости фонарь над диафрагмой должен быть прерван. Диафрагмы жесткости выполняются из профилированного настила марок H60-845-0,9 или H75-750-0,9 по ГОСТ 24045-94 с усиленным креплением его к прогонам.

Стропильные фермы, не примыкающие непосредственно к поперечным связям, раскрепляются в плоскости расположения этих связей распорками и растяжками. Распорки обеспечивают необходимую боковую жесткость ферм при монтаже (предельная гибкость верхнего пояса фермы из ее плоскости при монтаже λ u = 220). Растяжки предусматриваются для уменьшения гибкости нижнего пояса с целью предотвращения вибрации и случайных погнутостей при перевозке. Предельная гибкость нижнего пояса из плоскости фермы принимается: λ u = 400 – при статической нагрузке и λ u = 250 – при кранах режимов работы 7К и 8К или при воздействии динамических нагрузок, приложенных непосредственно к ферме.

Для горизонтальных связей обычно принимается связевая ферма с треугольной решеткой. При шаге стропильных ферм 12 м стойки-распорки связевых ферм проектируются с достаточно большой вертикальной жесткостью (как правило, из гнутых прямоугольных профилей) для опирания на них длинных диагональных раскосов, выполненных из уголков с незначительной вертикальной жесткостью.

Вертикальные связи между фермами предусматриваются по длине здания или температурного отсека в местах размещения поперечных связевых ферм по нижним поясам ферм. В зданиях с расчетной сейсмичностью 7, 8 и 9 баллов и кровлей по стальному профилированному настилу по рядам колонн вертикальные связи устанавливаются в местах размещения связевых ферм или диафрагм жесткости по верхним поясам стропильных ферм.

Основное назначение вертикальных связей – обеспечить проектное положение ферм при монтаже и увеличить их боковую жесткость. Обычно устраивается одна-две вертикальные связи по ширине пролета (через 12 – 15 м).

При опирании нижнего узла стропильных ферм на оголовок колонны сверху вертикальные связи располагаются также в плоскости опорных стоек ферм. При примыкании стропильных ферм сбоку к колонне эти связи располагаются в плоскости, совмещенной с плоскостью устройства вертикальных связей надкрановой части колонны.

В покрытиях зданий, эксплуатируемых в климатических районах с расчетной температурой ниже –40 о С, следует, как правило, предусматривать (дополнительно к обычно применяемым связям) вертикальные связи, расположенные по середине каждого пролета вдоль всего здания.

При наличии жесткого диска кровли в уровне верхних поясов ферм следует предусматривать инвентарные съемные связи для выверки проектного положения конструкций и обеспечения их устойчивости в процессе монтажа.

1. горизонтальные поперечные связи по нижним поясам ферм размещаются в торцах температурного блока при шаге колонн крайнего и среднего ряда 12 м. При длине блока более 144 м. дополнительно устраивают в середине блока. Образуются путем объединения нижних поясов 2-х соседних стропильных ферм с помощью решетки. В результате они выполняют совместно функции: воспринимают от стоек торцового фахверка ветровую нагрузку и передают ее на связи между колоннами и далее на фундамент, а также предотвращают перемещения вертикальных связей и растяжки между нижними поясами ферм. Распорки между нижними поясами ферм- закрепляют эти пояса от смещения, тем самым сокращая расчетную длину из плоскости фермы, уменьшает вибрации нижних поясов ферм.

2. горизонтальные продольные связи по нижним поясам ферм служат опорами для верхних концов стоек продольного фахверка; при действии крановых нагрузок вовлекают в работу соседние рамы, уменьшая поперечные деформации и избегая заклинивания мостовых кранов. Эти связи обязательны в однопролетных зданиях большой высоты, с тяжелыми мостовыми кранами, при наличии продольного фахверка. Распорки обеспечивают проектное положение ферм в процессе монтажа, ограничивают гибкость ферм из их плоскости. Роль распорок выполняют прогоны, которые закреплены от смещения.

3. горизонтальные поперечные связи по верхним поясам ферм по конструкциям и схемам размещения аналогичны связям по нижним поясам. Служат от смещения распорок по верхним поясам ферм. От них можно отказаться, если между соседними стропильными фермами блока установить вертикальные связи и через них обеспечит крепление распорок к поперечным связям по нижним поясам ферм.

4. 4. вертикальные связи между опорами ферм или балок ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций размещаются в каждом ряду колонн, а с подстропильными конструкциями – только в крайних рядах колонн при шаге 6 м. Ставят не чаще, чем через один шаг. При длине температурного блока 60-72 м на каждый ряд колонн их должно быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. при наличии этих связей по верху колонн ставят распорки.

Единая модульная система в строительстве

Типизация в строительстве осуществляется на основе Единой Модульной Системы. Это правила по которым назначаются и согласуются между собой размеры зданий и конструкций.

Размеры по правилам ЕМС назначают по базе модуля. Основной модуль (М) равен 100 мм. При выборе размеров для зданий, конструкций пользуются укрупненным модулем: 6000 мм = 60М; 7200 мм = 72М. Дробный модуль применяют для назначения сечений конструкций: 50 мм = ½М.

ЕМС - единая модульная система, представляющая собой свод правил, которые координируют размеры объемно-планировочных и конструктивных частей строительных объектов и размеры сборных модулей и оборудования.

МКРС - модульная координация размеров в строительстве. Стандарт, применение которого при проектировании зданий позволяет унифицировать размеров строительных конструкций и объемно-планировочные размеры зданий. Данный стандарт предполагает унификацию следующих параметров: высоты этажей (Н0), шагов (В0) и пролетов (L0).

ЕМС основана на принципе кратности размеров. Размер любого из элементов здания должен быть кратен величине, называемой модулем. В системе ЕМС принят модуль в 100 миллиметров, который в технической документации обозначается буквой М. Соответственно, размеры крупных элементов конструкций будут обозначаться как производные от модуля. Например, 6000 мм - 60 М, 3000 мм - 30 М и так далее. Мелкие элемент обозначаются как дробные о т модуля: 50 мм - ½ М, 20 мм - 1/5 М.

15 основа планировки промзданий

Промышленные здания подразделяются по двум видам планировки:

раздельные (отдельно стоящие) здания , планировка которых хотя и дает конструктивную простоту и высокий уровень индустриальности в производстве зданий, однако отличается такими недостатками, как большая площадь застройки, большая протяженность инженерных и транспортных сетей, невозможность организации поточного производства, значительные энергозатраты на отопление помещений;

сплошные (сблокированные) здания , которые представляют собой

многопролетные корпуса большой площади (до 30...35 тыс. кв.м).Сплошная планировка обеспечивает многовариантную расстановку технологического оборудования, уменьшение площади завода на 30…40 %, снижение стоимости строительства на 10…15 %, сокращение длины инженерных и транспортных коммуникаций, сокращение периметра наружных стен на 50 % со снижением расходов на эксплуатацию. Однако недостатками сплошных зданий являются удорожание естественного освещения, затрудненный водоотвод с покрытий, усложнение путей передвижения транспорта и персонала. Блокировать цеха целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и при этом не ухудшаются условия технологии производства и труда рабочих.

Планировка промышленных зданий сопровождается зонированием в пределах объема производственных зданий, помещений, участков и зон, выделяемых по признакам однотипности технологии, уровню производственной вредности, уровню пожаро- и взрывоопасности, направленности транспортных и людских потоков, по перспективам расширения и переоснащения.

На выбор этажности промышленного здания влияют:

технология производства;

климатические условия района;

требования к застройке (городская, периферийная);

характер отведенного участка (свободный, стесненный рельеф);

достоинства и недостатки.

Одноэтажные здания имеют следующие достоинства :

простое объемно-планировочное решение;

склонность к унификации и блокированию;

снижение стоимости 1 кв. м на 10 % по сравнению со стоимостью многоэтажных зданий;

облегчение установки технологического оборудования;

упрощение путей грузовых потоков и использование горизонтального транспорта;

равномерное освещение рабочих мест естественным светом через фонари;

обеспечение естественного воздухообмена.

Недостатками одноэтажных зданий являются:

большая площадь застройки;

большая протяженность инженерных и транспортных сетей;

повышенные расходы на благоустройство территории;

большая площадь наружных ограждающих конструкций и в результате значительные расходы на отопление.

Многоэтажные здания лишеныбольшинства недостатков одноэтажных зданий и рациональны по применению, особенно при нагрузках до 10 кН/кв. м.

К основным недостаткам многоэтажных зданий относятся:

потребность в вертикальном транспорте;

повышенная стоимость;

ограничение по ширине при необходимости естественного освещения (ширина не более 24 м);

высокий удельный вес подсобных помещений.

Температурный блок.

Для ограничения усилий, возникающих в конструкциях от перепада температур, здание разрезается температурно-деформационными швами на отсеки (температурные блоки), размеры которых зависят от материала каркаса, теплового режима здания и климатических условий района строительства. Эти размеры определяются расчетом.

Продольные и поперечные температурно-деформационные швы указаны синим и красным цветами соответственно.

Для железобетонного и смешанного каркаса длина температурного блока А ≤ 72 м – если в здании по длине присутствуют неразрезные элементы (например, подкрановые балки). Для бескрановых зданий нормами разрешено увеличивать А до 144 м. Однако, если в здании есть подвесное оборудование (монорельс и т.п.) длина температурного блока не должна превышать 72 м. Допускается А увеличивать до 280 м, но при этом высота строения не должна превышать 8,4 м.

Ширина температурного блока Б не должна быть больше 90-96 м.

В особых климатических районах и для неотапливаемых помещениях длину температурного блока А назначают по инструкциям, привязанным к местным климатическим условиям.

В стальных каркасах зданий с мостовыми кранами А ≤ 120 м, в бескрановых зданиях А ≤ 240 м, а Б ≤ 210 м. В зданиях с кранами большой грузоподъемности (Q до 4500 кН) или при тяжелом или особо тяжелом режиме их работы А не должна превышать 96 м.

Температурный шов

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Тактемпературный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите

Связи по покрытию включают вертикальные связи между фермами, горизонтальные связи по верхним и по нижним поясам ферм. Связи по верхним поясам устраиваем для того, чтобы воспринять часть ветровой нагрузки и предотвратить от выпучивания сжатые стержни верхних поясов. Поперечные связевые фермы устраиваем в торцах и в середине здания. Связи по нижним поясам устанавливаем для восприятия ветровых и крановых нагрузок продольного и поперечного направления. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм.

Связи между колоннами производственных зданий

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.



Системы связи каркасов производственных зданий

Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам. Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов. Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм. Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы связи предотвращают от смещения распорки.

Прогоны сплошного сечения

Сплошные прогоны применяют при шаге ферм не более 6 м н в зависимости от назначения имеют различное расчетное сечение. Сплошные прогоны изготовляются по разрезной и неразрезной схемам. Чаще всего используют разрезные схемы из-за их свойства упрощать монтаж, однако неразрезная схема тоже обладает положительными отличительными свойствами, к примеру, при неразрезной схеме расходуется меньше стали на сами прогоны.

Прогоны, расположенные на скате, с учётом кровли с большим уклоном всегда работают на изгиб в двух плоскостях. Устойчивость прогонов достигается за счёт крепления кровельных плит или за счёт присоединения настила к прогонам, с учётом всех сил трения между ними. Прогоны принято крепить к поясам ферм, используя коротыши из уголков и гнутые элементы из листовой стали.

Решетчатые прогоны

В качестве прогонов применяют прокатные или холодногнутые швеллеры, при шаге ферм более 6 м - решетчатые прогоны. Простой и наиболее легкой конструкцией решетчатого прогона является прутково-шпренгельный прогон с решеткой и нижним поясом из круглой стали. Недостаток такого прогона в сложности контроля сварных швов в узлах сопряжения прутков решетки с нижним поясом, а также в необходимости аккуратной транспортировки и монтажа.

Верхний пояс решетчатых прогонов в случае его большой жесткости из плоскости прогона следует рассчитывать на совместное действие осевого усилия и изгиба только в плоскости прогона, а в случае малой жесткости верхнего пояса из плоскости прогона необходимо рассчитывать верхний пояс на совместное действие осевого усилия и изгиба как в плоскости прогона, так и в перпендикулярной к ней плоскости. Гибкость верхнего пояса решетчатых, прогонов не должна превышать 120, а элементов решетки-150. Верхний пояс этого прогона состоит из двух швеллеров, а элементы решётки – из одиночного гнутого швеллера. Обычно раскосы фиксируются к верхнему поясу с помощью дуговой или контактной сварки.

Решетчатые прогоны рассчитывают как фермы с неразрезным верхним поясом, который всегда работает на сжатие с изгибом в одной или в двух плоскостях, в то время как другие элементы испытывают продольные усилия.