Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Устройство и работа ректификационной колонны типы тарелок. Колпачковые колонны: устройство и принцип работы. Свойства ректификационной колонны

Устройство и работа ректификационной колонны типы тарелок. Колпачковые колонны: устройство и принцип работы. Свойства ректификационной колонны

Размещено на http://www.allbest.ru/

Введение

Ректификация (от лат. rectus - правильный и facio - делаю) - разделение однородных жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путем многократных испарения жидкости и конденсации паров. В этом и заключается основное отличие ректификации от дистилляции, при которой в результате однократного цикла частичного испарения-конденсации достигается лишь предварительное разделение жидких смесей. Потоки пара и жидкости в процессе ректификации, перемещаясь противотоком, многократно контактируют друг с другом в специальных аппаратах - ректификационных колоннах . Часть выходящего из аппарата пара (или жидкости) возвращается обратно после конденсации (для пара) или испарения (для жидкости). Такое противоточное движение контактирующих потоков сопровождается процессами теплообмена и массообмена, которые на каждой стадии контакта протекают до состояния равновесия; при этом восходящие потоки пара непрерывно обогащаются более летучим- низкокипящим компонентом (НК), а стекающая жидкость - менее летучим- высококипящим (ВК). При затрате того же количества тепла, что и при дистилляции, ректификация позволяет достигнуть большего извлечения и обогащения по нужному компоненту или группе компонентов. Ректификацию различают непрерывную и периодическую. В случае непрерывной ректификации разделяемая смесь непрерывно подаётся в ректификационную колонну и из колонны непрерывно отводятся две и большее число фракций, обогащенных одними компонентами и объединённых другими. Полная колонна состоит из 2 секций - укрепляющей и исчерпывающей. Исходная смесь (обычно при температуре кипения) подаётся в колонну, где смешивается с извлечённой жидкостью и стекает по контактным устройствам (тарелкам или насадке) исчерпывающей секции противотоком к поднимающемуся потоку пара. Достигнув низа колонны, жидкостный поток, обогащенный тяжелолетучими компонентами, подаётся в куб колонны. Здесь жидкость частично испаряется в результате нагрева подходящим теплоносителем, и пар снова поступает в исчерпывающую секцию. Выходящий из этой секции пар поступает в укрепляющую секцию. Пройдя её, обогащенный легколетучими компонентами пар, поступает в дефлегматор, где обычно полностью конденсируется подходящим хладагентом. Полученная жидкость делится на 2 потока: дистиллят и флегму. Дистиллят является продуктовым потоком, а флегма поступает на орошение укрепляющей секции, по контактным устройствам которой стекает. Часть жидкости выводится из куба колонны в виде кубового остатка. Отношение количества флегмы к количеству дистиллята обозначается через R и носит название флегмового числа. Это число - важная характеристика процесса ректификации: чем больше R, тем больше эксплуатационные расходы на проведение процесса. Минимально необходимые расходы тепла и холода, связанные с выполнением какой-либо конкретной задачи разделения, могут быть найдены с использованием понятия минимального флегмового числа. Минимальное флегмовое число находится расчётным путём из предположения, что число контактных устройств, или общая высота насадки, стремится к бесконечности. Если исходную смесь требуется разделить непрерывным способом на число фракций больше двух, то применяется последовательное либо параллельно-последовательное соединение колонн. При периодической ректификации исходная жидкая смесь единовременно загружается в куб колонны, ёмкость которого соответствует желаемой производительности. Пары из куба поступают в колонну и поднимаются к дефлегматору, где происходит их конденсация. В начальный период весь конденсат возвращается в колонну, что отвечает режиму полного орошения. Затем конденсат делится на флегму и дистиллят. По мере отбора дистиллята (либо при постоянном флегмовом числе, либо с его изменением) из колонны выводятся сначала легколетучие компоненты, затем среднелетучие и т. д. Нужную фракцию (или фракции) отбирают в соответствующий сборник. Операция продолжается до полной переработки первоначально загруженной смеси. Аппараты, служащие для проведения ректификации, - ректификационные колонны - состоят из собственно колонны, где осуществляется противоточное контактирование пара и жидкости, и устройств, в которых происходит испарение жидкости и конденсация пара, - куба и дефлегматора. Колонна представляет собой вертикально стоящий полый цилиндр, внутри которого установлены тарелки (контактные устройства различной конструкции) или помещен фигурный кусковой материал - насадка. Куб и дефлегматор - это обычно кожухотрубные теплообменники (находят применение также трубчатые печи и роторные испарители). Назначение тарелок и насадки - развитие межфазной поверхности и улучшение контакта между жидкостью и паром. Тарелки, как правило, снабжаются устройством для перелива жидкости. В качестве насадки ректификационных колонн обычно используются кольца, наружный диаметр которых равен их высоте. Наиболее распространены кольца Рашига и их различные модификации. Как в насадочных, так и в тарельчатых колоннах кинетическая энергия пара используется для преодоления гидравлического сопротивления контактных устройств и для создания динамической дисперсной системы пар - жидкость с большой межфазной поверхностью. Существуют также ректификационные колонны с подводом механической энергии, в которых дисперсная система создаётся при вращении ротора, установленного по оси колонны. Роторные аппараты имеют меньший перепад давления по высоте, что особенно важно для вакуумных колонн. Расчет ректификационной колонны сводится к определению основных геометрических размеров колонны - диаметра и высоты. Оба параметра в значительной мере определяются гидродинамическим режимом работы колонны, который, в свою очередь, зависит от скоростей и физических свойств фаз, а также от типа насадки. Ректификация широко применяется как в промышленном, так и в препаративном и лабораторном масштабах, часто в комплексе с другими процессами разделения, такими как адсорбция. Экстракция и кристаллизация. Так же ректификация применима для получения отдельных фракций и индивидуальных углеводородов из нефтяного сырья в нефтеперерабатывающей и нефтехимической промышленности. Ректификация широко используется во многих отраслях: коксохимической, лесохимической, пищевой, химико-фармацевтической промышленности и др. В последнее время ректификация приобретает всё большее практическое значение в связи с решением таких важных задач, как очистка веществ и выделение ценных компонентов из отходов или природных смесей. Сюда относят выделение стабильных изотопов ряда легких элементов. Ректификация как метод очистки имеет ряд неоспоримых преимуществ, среди которых самое существенное то, что в процесс не требуется вносить те агенты, которые сами могут быть источниками загрязнения.

1. Требования к конструкции ректификационных колонн

Обычно ректификационная колонна выполняется в виде цилиндра, заполненного специальными распределительными устройствами для создания поверхности контакта между стекающей сверху жидкой фазой и поднимающимися навстречу парами. При конструкции ректификационных колонн обычно руководствуются требования, предъявляемыми к конструкции любого химического аппарата (дешевизна, простота в обслуживании, высокая производительность, прочность, коррозионная устойчивость, долговечность и т.д.) Помимо этого, необходимо учитывать следующие специфические требования к конструкции колонны:

    Колонна должна обладать максимальной пропускной способностью по паровой и жидкой фазе;

    Контактные устройства должны обеспечивать максимальную поверхность контакта между фазами при максимальной эффективности передачи массы;

    Колонна должна работать устойчиво и равномерно по всему сечению в широком диапазоне нагрузок;

Гидравлическое сопротивление распределительных устройств должно быть минимальным. Стремление к максимальному удовлетворению этих требований, а так же специфика свойств смесей, подлежащих разделению (теплообразование, агрессивность, закоксовывание, образование термополимеров и т.д.), приводит к многообразию типов ректификационных колонн.

2. Классификация колонных аппаратов

2.1 Классификация в зависимости от относительного движения фаз

Особенностью аппаратов перекрестного тока и полного смешения является то, что взаимодействие фаз в этих аппаратах осуществляется посредством барботажа паровой фазы через жидкую фазу. Поэтому эти группы обычно объединяют под общим названием барботажных колонн ; так как барботаж пара через слой жидкости происходит на пластинах- тарелках, оборудованных специальными устройствами для ввода пара и протока жидкости, эти две группы ректификационных колонн ещё называют тарельчатыми . Колонны полного смешения отличаются от колонн перекрестного тока в основном отсутствием переливных устройств для жидкости. Жидкость сливается на нижележащие тарелки через те же отверстия, по которым поднимается пар. Вследствие этого тарелки полного смешения получили название провальных. В противоточных и прямоточных колоннах паровой поток взаимодействует с жидкостью, текущей в виде тонкой пленки по поверхности специальной насадки. Поэтому эти две группы ректификационных колонн обычно объединяют под общим названием плёночных или насадочных . Наибольшее распространение получили барботажные колонны. Рабочее пространство этих колонн разделено на секции, образуемые тарелками.

2.2 Классификация тарелок

При количественном расчёте работы ректификационных колонн используется понятие теоретическая тарелка (гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости, то есть концентрации компонентов этих потоков связаны между собой коэффициентом распределения). Любой реальной ректификационной колонне можно поставить в соответствие колонну с определённым числом теоретических тарелок, входные и выходные потоки которой как по величине, так и по концентрациям совпадают с потоками реальной колонны. Исходя из этого, определяют к.п.д. колонны как отношение числа теоретических тарелок, соответствующих этой колонне, к числу действительно установленных тарелок. Для насадочных колонн можно определить величину ВЭТТ (высоту, эквивалентную теоретической тарелке) как отношение высоты слоя насадки к числу теоретических тарелок, которым он эквивалентен по своему разделительному действию.

а) колпачковые колонны (рис. а) наиболее часто применяют в ректификационных установках. Пары с предыдущей тарелки попадают в паровые патрубки колпачков и барботируют через слой жидкости, в которую частично погружены колпачки. При барботаже пара через жидкость различают три режима барботажа:

    пузырьковый режим (пар пробулькивается в виде отдельных пузырьков, образующих цепочку около стенки колпачка);

    струйный режим (отдельные пузырьки пара сливаются в непрерывную струйку);

факельный режим (отдельные пузырьки пара сливаются в общий поток, имеющий вид факела).

Колпачки имеют отверстия или зубчатые прорези, расчленяющие пар на мелкие струйки для увеличения поверхности соприкосновения его с жидкостью. Переливные трубки служат для подвода и отвода жидкости и регулирования уровня жидкости на тарелке. Основной областью массообмена и теплообмена между парами и жидкостью, как показали исследования, является слой пены и брызг над тарелкой, создающийся в результате барботажа пара. Высота этого слоя зависит от размеров колпачков, глубины их погружения, скорости пара, толщины слоя жидкости на тарелке, физических свойств жидкости и др.

Следует отметить, что, кроме колпачковых тарелок, применяют также клапанные, желобчатые, S-образные, чешуйчатые, провальные и другие конструкции тарелок. Достоинством колпачковых тарелок является удовлетворительная работа в широком диапазоне нагрузок по жидкости и пару, а также небольшая стоимость эксплуатации.

б) ситчатые тарелки (рис. б) применяют главным образом при ректификации спирта и жидкого воздуха. Допустимые нагрузки по жидкости и пару для них относительно невелики, и регулирование режима их работы затруднительно. Жидкость и пар проходят попеременно через каждое отверстие в зависимости от соотношения их напоров. Тарелки имеют малое сопротивление, высокий к.п.д., работают при значительных нагрузках и отличаются простотой конструкции. Массо - и теплообмен между паром и жидкостью в основном происходят на некотором расстоянии от дна тарелки в слое пены и брызг. Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточны для преодоления давления слоя жидкости на тарелке и создания сопротивления ее отеканию через отверстия. Ситчатые тарелки необходимо устанавливать строго горизонтально для обеспечения прохождения пара через все отверстия тарелки, а также во избежание стекания жидкости через них. Обычно диаметр отверстий ситчатой тарелки принимают в пределах 0,8-8,0 мм.

в) клапанные тарелки занимают среднее положение между колпачковыми и ситчатыми. Клапанные тарелки показали высокую эффективность при значительных интервалах нагрузок благодаря возможности саморегулирования. В зависимости от нагрузки клапан перемещается вертикально, изменяя площадь живого сечения для прохода пара, причем максимальное сечение определяется высотой устройства, ограничивающего подъем. Площадь живого сечения отверстий для пара составляет 10-15% площади сечения колонны. Скорость пара достигает 1,2 м/с. Клапаны изготовляют в виде пластин круглого или прямоугольного сечения с верхним или нижним ограничителем подъема. Тарелки, собранные из S-образных элементов, обеспечивают движение пара и жидкости в одном направлении, способствуя выравниванию концентрации жидкости на тарелке. Площадь живого сечения тарелки составляет 12-20% от площади сечения колонны. Коробчатое поперечное сечение элемента создает значительную жесткость, позволяющую устанавливать его на опорное кольцо без промежуточных опор в колоннах диаметром до 4,5 м.

г) каскадные тарелки Вентури собирают из отдельных листов, выгнутых так, чтобы направление потока пара было горизонтальным. Каналы для прохода пара имеют профиль сечения трубы Вентури, что способствует максимальному использованию энергии пара и снижению гидравлического сопротивления. Потоки пара и жидкости направлены в одну сторону, что обеспечивает хорошее перемешивание и контакт фаз. По сравнению с колпачковыми тарелками скорость пара может быть увеличена более чем вдвое. Конструкция гибкая, не допускает провала жидкости и снижения за счет этого эффективности. Небольшая удерживающая способность (30-40% по сравнению с колпачковой тарелкой) является ценным качеством при переработке чувствительных к нагреву жидкостей. Расстояние между тарелками выбирается в пределах 450-900 мм. Каскадные тарелки успешно применяются в установках, где необходимо обеспечить высокие скорости пара и жидкости.

д) решетчатые тарелки изготавливают из штампованных листов с прямоугольными прорезами или набираются из полос. Необходимость опорной конструкции определяется толщиной металла и диаметром колонны. Расстояние между тарелками обычно 300-450 мм. Лучшая работоспособность, по сравнению с колпачковыми тарелками, при максимальных нагрузках.

е) волнистые тарелки изготовляются штамповкой из перфорированных листов толщиной 2,5-3 мм в виде синусоидных волн. Жесткость конструкции позволяет использовать тонкий металл. Направление волн на соседних тарелках перпендикулярное. Глубина волн выбирается в зависимости от перерабатываемой жидкости. За счет большой турбулизации жидкости эффективность волнистой тарелки выше. А опасность засорения меньше, чем для плоской тарелки. Размеры волн увеличиваются с увеличением расчетной нагрузки по жидкости. Отношение высоты волны к ее длине выбирается в пределах от 0,2-0,4. Тарелки в колонне располагаются на расстоянии 400-600 мм друг от друга.

ж) насадочные колонны получили широкое распространение в промышленности (см. рис. в). Они представляют собой цилиндрические аппараты, заполненные инертными материалами в виде кусков определенного размера или насадочными телами, имеющими форму, например, колец, шаров для увеличения поверхности фазового контакта и интенсификации перемешивания жидкой и паровой фаз.

Колпачковая колонна для дистилляции представляет собой промышленные устройства, которые используются, преимущественно, при производстве спирта сырца на больших спиртзаводах и водочных фабриках. В любительских условиях пользоваться ей сможет не каждый, а тем более сделать своими руками.

Заводская колпачковая колонна

Это не потому что ее устройство слишком сложное, а изготовление требует особых инструментов или высокого мастерства. Справиться со строительством колпачковой колонны в домашней мастерской сможет любой квалифицированный слесарь, или человек умеющий работать основными ручными электроинструментами. Все составные части колпачковой колонны можно без труда купить в магазине или интернете. Собрать их своими руками не сложно на оборудовании, которые есть в любом гараже. При определенных навыках многие части колонны изготовляются самостоятельно.

Если вы решили построить своими руками самогонный аппарат, оборудованный колпачковой колонной, то следует помнить, здесь очень важную роль играют размеры устройства. Если нарушить пропорции, то вместо ректификационной колонны колпачкового типа получится обыкновенный дистиллятор, работающий даже хуже аппарата классической конструкция.

Принцип работы колпачковой колонны

Работает колпачковая колонна по принципу тепломассобмена между поднимающимся снизу, из испарителя, паром и стекающей сверху охлаждённой флегмой. Колпачки, или тарелки служат для увеличения площади контакта нагретого пара и жидкости. От количества тарелок зависит количество точек превращения пара в жидкость и повторного испарения жидкости. Конденсируется спиртосодержащий пар не только на внутренних стенках колонны, но и на поверхности тарелок. Они имеют форму полусферы, обращенной выпуклостью вверх.

Конденсирующаяся на внешней поверхности флегма стекает вниз сквозь переливные отверстия и попадает на нижнюю тарелку, нагретую до более высокой температуры. Спирт и другие легкокипящие фракции повторно испаряются, а жидкости с более высокой температурой кипения (сивушные масла и вода) стекают обратно в испаритель, где остаются в виде водного раствора.

При прохождении спиртового пара колонной высотой 50 сантиметров при монтаже внутри нее 8- 10 колпачков, процесс превращения жидкости в пар и обратно происходит не менее 30- 40 раз. Это количество называется кратностью очистки. Если вы прочитаете в характеристиках колпачковых колонн промышленного изготовления, которые можно без труда купить в интернете, что их кратность очистки составляет 20 или 50, это не значит, что спирт становится во столько раз чище, а характеризует только особенности технологического процесса.

Естественно, чем выше кратность, тем качественнее спирт получается, и тем меньше в нем примесей. Соотношение диаметра и высоты колонны должно составлять не менее 1 к 8, это оптимальные размеры, как для промышленных установок, так и для любительских. Поднимаясь вверх по колонне, пар обогащается спиртом и из него удаляются примеси, он укрепляется, поэтому часто такие колонны называются укрепляющими.

Особенности работы

Если на колпачковой колонне вы собрались перегонять брагу, то следует помнить, что в процессе дистилляции отсекаются только хвосты самогона, для удаления головы - метилового спирта, ацетона, эфира и альдегидов, необходимо использовать дробную перегонку, и отобрать расчетное количество голов, как и при работе на обычном дистилляторе. Если же вы перегоняете спирт сырец, отбор голов уже не требуется, они удалены на этапе первичной перегонки.

Температурный режим перегонки на колпачковой колонне поддерживать очень просто - температура на верхнем термометре (возле патрубка выхода из колонны) должна составлять 72- 75 градусов Цельсия. При повторной перегонке температуру можно поднять до 78 С, качество получаемого спирта сырца от этого не слишком ухудшится.

Изготовление колпачковой колонны

Сделать своими руками колпачковую колонну несложно, если у вас есть в наличии одна из самых сложных в изготовлении ее составных частей - колпачковые тарелки. Купить их можно на соответствующих сайтах в интернете. В большинстве случаев, продаются тарелки из Китая. Но выбирать не приходится - товар слишком специфический и занимаются их производством считанное количество мастерских. Самостоятельно же сделать рабочие тарелки достаточно сложно, но возможно.

Для этого понадобятся медные или нержавеющие пластины, из которых вырезаются круги, равные внутреннему диаметру основной трубы колонны. Сама колонна изготовляется из стеклянной, медной или нержавеющей трубы, диаметром 8-10 мм и длиной (высотой) около 75 см. Стеклянные колонны, предлагаемые многими производителями, пользуются популярностью из-за того, что за процессом барботирования можно наблюдать - это довольно эффектное зрелище. Но на работоспособность колонны материал ее влияет мало.

В вырезанных дисках проделываются 4 отверстия диаметром 1-1,5 мм и в них вставляются трубки из меди или нержавейки высотой около 1,5 см. Они служат для прохождения пара снизу вверх. Два отверстия делаются по краям диска. Их диаметр около 10 мм. В них также вставляются трубки, но высотой поменьше - 1,5-0,8 см. Стыки трубок и дисков пропаиваются.

Медные тарелки для колонны

На торцы средних трубок насаживаются колпачки с таким расчетом, чтобы они касались поверхности диска. Верхняя часть трубок перфорируется по периметру отверстиями 1-2 мм диаметром, для выхода пара. Чем их больше, тем лучше. Нижние края колпачков пропиливаются на высоту 0,5 см. Они должны быть на 2 мм ниже среза боковых трубок.

Колпачки классического полусферического вида изготовить сложно, поэтому можно выполнить их конусообразными или стакановидными. Закрепить их на паропроводных трубках можно саморезами или муфтами. Тарелка в сборе представляет один рабочий элемент. В колонне указанной высоты их должно быть не менее 5, максимально - 8.

Чтобы тарелки было удобнее вставлять в колонну и извлекать для чистки, их насаживают на штырь, диаметром 5-8 мм и закрепляют гайками на равном расстоянии друг от друга. Верхний край колонны паропроводом соединяется с холодильником проточного типа. Термометры устанавливаются в верхней точке колонны и на кубе. Чтобы устанавливать и извлекать тарелочную сборку из корпуса было удобнее, верх колонны выполняется в виде винтовой крышки. Патрубок отвода пара устанавливается ниже уровня резьбы на 1-1,5 см.

Как это работает

Видео как сделать колпачковую колонну:

Пар из куба с брагой поднимается вверх и сквозь паропроводные трубки заполняет пространство над первой тарелкой. Там он конденсируется и оседает в виде жидкости на ее поверхности. Когда ее уровень становится выше прорезей на колпачках, пар прорывается сквозь жидкость и, вследствие явления барботажа, удаляет из нее оставшиеся пары спирта и поднимается вверх, поступая в другую тарелку. Там процесс повторяется.

Когда на тарелке уровень флегмы поднимется выше среза проливной трубки, она стекает вниз, в куб. По мере поднятия пара вверх, он становится все богаче спиртом и, после прохождения последней тарелки, практически полностью освобождается от примесей.

Наиболее эффективно работает колпачковая колонна для дистилляции при повторной перегонке самогона, полученного на обычном самогонном аппарате, но и первичную брагу на ней можно дистиллировать. Правда, при этом процесс будет идти довольно медленно.

Ректификационная колонна (колонна фракционирования) - цилиндрический вертикальный аппарат, оснащенный внутренними тепло- и массообменными устройствами и вспомогательными узлами, предназначенный для разделения двухкомпонентных или многокомпонентных жидких смесей на фракции, каждая из которых содержит вещества с близкой температурой кипения.

Ректификационные колонны подразделяются:

    по количеству получаемых продуктов:

Простые ректификационные колонны обеспечивают разделение исходной смеси (сырья) на два продукта: ректификат (дистиллят), выводимый с верха колонны в парообразном состоянии, и остаток (нижний жидкий продукт ректификации)

Сложные ректификационные колонны разделяют сырье более чем на два продукта. Различают сложные колонны с отбором дополнительных фракций из колонны в виде боковых погонов и колонны, у которых дополнительные продукты отбирают из специальных отпарных колонн (стриппинги ).

    по назначению:

1) для атмосферной и вакуумной перегонки нефти и мазута

2) для вторичной перегонки бензина

3) для стабилизации нефти, газоконденсатов, нестабильных бензинов

4) для фракционирования нефтезаводских, нефтей и природных газов

5) для отгонки растворителей в процессах очистки масел

6) для разделения продуктов трубчатой печи и каталитических процессов переработки нефтяного сырья и газов и т. д.

    по величине давления:

это колонны, в верхней части которых давление несколько выше атмосферного (0,1…0,2 МПа). Давление в нижней части колонны, как правило, зависит от сопротивления ее внутренних устройств и может значительно превышать атмосферное. Применяются такие колонны при перегонке стабилизированной или отбензиненной нефти на топливные фракции и мазут.

работают под вакуумом (или глубоким вакуумом). Иными словами, давление в них ниже атмосферного (создается разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта. Такие колонны предназначаются для фракционирования мазута на вакуумный (глубоковакуумный) газойль или узкие масляные фракции и гудрон.

применяются при стабилизации или отбензинивании нефти, стабилизации газовых бензинов, бензинов перегонки нефти и вторичных процессов и фракционировании нефтезаводских или попутных нефтяных газов.

    по принципу действия:

применяются на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения. Исходное сырьё заливают в куб на высоту, равную 2/3 его диаметра. Подогрев ведут глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем компоненты с более высокой температурой кипения (бензол, толуол и т. д.). Наиболее высококипящие компоненты смеси остаются в кубе, образуя кубовый остаток. По окончании процесса ректификации этот остаток охлаждают и откачивают. Куб вновь заполняют сырьём и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла, меньшая производительность труда и менее эффективное использование оборудования.

Установки с колоннами непрерывного действия лишены недостатков колонн периодического действия. В таких колоннах нагретое сырьё вводится в ректификационную колонну, где разделяется на жидкую и паровую фазы. В результате ректификации сверху колонны отбирается изопентан как головной продукт и снизу колонны – н-пентан как остаток.

    по способу межступенчатой передачи жидкости:

1) с переточными устройствами (с одним, двумя или более)

2) без переточных устройств (провального типа)

    по способу организации контакта парогазовой и жидкой фаз:

Эти колонны применяют, например, для выделения тяжёлой воды. Тарелки представляют собой конические щитки с углом наклона 40°. Неподвижные тарелки 4 по периферии прикреплены к корпусу колонны 1, подвижные 3 прикреплены в центре к валу 5 и вместе с ним вращаются. Вращающиеся тарелки чередуются с неподвижными. Через каждые 1,5 м по высоте вал охватывается шариковыми подшипниками 6, работающими без смазки. Для удобства монтажа колонна собрана из царг (частей / на фланцах). Флегма спускается сверху по неподвижной тарелке 4 и у центра переливается на нижележащую вращающуюся тарелку 3. Под влиянием центробежной силы флегма перемещается по вращающейся тарелке вверх до её периферии и в виде сплошной кольцевой пленки переливается на неподвижную тарелку. Пары движутся над флегмой противотоком.

В насадочных колоннах контакт между газом (паром) и жидкостью осуществляется на поверхности специальных насадочных тел, а также в свободном пространстве между ними.

Насадка – тело из инертных материалов, она создана для создания большей поверхности контакта меж стекающей по ней жидкостью и поднимающимся потоком паров и интенсивного их перемешивания. Насадка выполняется обычно из коррозионно-стойкого материала (керамика, фарфор, стекло).

Насадку укладывают на тарелки, снабженные двумя отверстиями двух видов: малыми – для стока орошения (флегмы) и большими – для прохода паров. Слой насадки разбивают на несколько маленьких слоев высотой 1-1,5 м, разделяя их свободным пространством.

Чем мельче насадочные кольца, тем лучше контакт между парами и флегмой, но тем выше гидравлическое сопротивление движению паров в колонне. При некотором предельном значении нагрузки насадочной колонны, т. е. при высокой скорости паров или жидкости, может наблюдаться «захлёбывание» насадки , когда прекращается стекание жидкости и начинается её выброс из колонны. Основной недостаток насадочных колонн – образование «мёртвых» зон в насадке, через которые не проходят ни пары, ни флегма, что ухудшает контакт между массообменивающими фазами и понижает эффективность разделения.

Конструкции насадок, применяемых в промышленных аппаратах нефтегазопереработки и нефтехимии, можно разделить на две группы - нерегулярные (насыпные) и регулярные насадки.

В качестве нерегулярных (насыпных) насадок используют твердые тела различной формы, загруженные в корпус в навал. В результате в колонне образуется сложная пространственная структура, обеспечивающая значительную поверхность контакта фаз.

Среди насадок, засыпаемых в навал, широкое распространение получили кольца Рашига, представляющие собой отрезки труб, высота которых равна наружному диаметру. Низкая стоимость и простота изготовления колец Рашига делают их одним из самых распространенных типов насадок. Наряду с гладкими цилиндрическими кольцами из металла, керамики или фарфора разработаны насадки с ребристой наружной и (или) внутренней поверхностями. Для интенсификации процесса массообмена разработаны конструкции цилиндрических насадок с перегородками.


Насадка из колец Рашига (1 - отдельное кольцо; 2 - кольца навалом; 3 - регулярная насадка)

Промышленное использование в настоящее время нашла еще одна кольцевая насадка - кольца Палля. При изготовлении таких колец на боковых стенках сделаны два ряда прямоугольных, смещенных относительно друг друга надрезов, лепестки которых отогнуты внутрь насадки. Конструкция колец Палля по сравнению с кольцами Рашига позволяет увеличить пропускную способность и снизить гидравлическое сопротивление.

Насадка, известная как седла Инталлокс, является сегодня наиболее распространенной керамической насадкой. Поверхность ее представляет собой часть тора. Седла Инталлокс обладают механической прочностью, обеспечивают однородность размещения насадки и хорошее самораспределение жидкости.

В тарельчатых колоннах контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке).

Тарелка ректификационной колонны представляет собой горизонтальную перегородку в колонне, на тарелке находится слой стекающей по колонне жидкости (орошение), сквозь которую барботируют поднимающиеся снизу пары.

В книге Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. «Процессы и аппараты нефтегазопереработки и нефтехимии» колонные аппараты по типу внутренних контактных устройств подразделяются на тарельчатые, насадочные и пленочные (к пленочным авторы данного издания относят аппараты, в которых фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности).

Цель статьи – разобрать теоретические и некоторые практические аспекты работы домашней ректификационной колонны, нацеленной на получение этилового спирта, а также развеять самые распространенные в Интернете мифы и разъяснить моменты, о которых «умалчивают» продавцы оборудования.

Ректификация спирта – разделение многокомпонентной спиртосодержащей смеси на чистые фракции (этиловый и метиловый спирты, воду, сивушные масла, альдегиды и другие), имеющие разную температуру кипения, путем многократного испарения жидкости и конденсации пара на контактных устройствах (тарелках или насадках) в специальных противоточных башенных аппаратах.

С физической точки зрения ректификация возможна, поскольку изначально концентрация отдельных компонентов смеси в паровой и жидкой фазах отличается, но система стремится к равновесию – одинаковому давлению, температуре и концентрации всех веществ в каждой фазе. При контакте с жидкостью пар обогащается легколетучими (низкокипящими) компонентами, в свою очередь, жидкость – труднолетучими (высококипящими). Одновременно с обогащением происходит обмен теплом.

Принципиальная схема

Момент контакта (взаимодействия потоков) пара и жидкости называется процессом тепломассообмена.

Благодаря разной направленности движений (пар поднимается вверх, а жидкость стекает вниз), после достижения системой равновесия в верхней части ректификационной колонны можно по отдельности отобрать практически чистые компоненты, входившие в состав смеси. Сначала выходят вещества с более низкой температурой кипения (альдегиды, эфиры и спирты), потом – с высокой (сивушные масла).

Состояние равновесия. Появляется на самой границе разделения фаз. Достигается только при одновременном соблюдении двух условий:

  1. Равное давление каждого отдельно взятого компонента смеси.
  2. Температура и концентрация веществ в обеих фазах (паровой и жидкой) одинакова.

Чем чаще система приходит в равновесие, тем эффективнее тепломасообмен и разделение смеси на отдельные составляющие.

Разница между дистилляцией и ректификацией

Как видно на графике, из 10% спиртового раствора (браги) можно получить самогон 40%, а при второй перегонке этой смеси выйдет 60-градусный дистиллят, при третьей – 70%. Возможны следующие интервалы: 10-40; 40-60; 60-70; 70-75 и так далее до максимума – 96%.

Теоретически, чтобы получить чистый спирт, требуется 9-10 последовательных дистилляций на самогонном аппарате. На практике перегонять спиртосодержащие жидкости концентрацией выше 20-30% взрывоопасно, к тому же из-за больших затрат энергии и времени экономически невыгодно.

С этой точки зрения, ректификация спирта – это минимум 9-10 одновременных, ступенчатых дистилляций, которые происходят на разных контактных элементах колонны (насадках или тарелках) по всей высоте.

Отличие Дистилляция Ректификация
Органолептика напитка Сохраняет аромат и вкус исходного сырья. Получается чистый спирт без запаха и вкуса (проблема имеет решение).
Крепость на выходе Зависит от количества перегонок и конструкции аппарата (обычно 40-65%). До 96%.
Степень разделения на фракции Низкая, вещества даже с разной температурой кипения перемешиваются, исправить это невозможно. Высокая, можно выделить чистые вещества (только с разной температурой кипения).
Способность убрать вредные вещества Низкая или средняя. Для повышения качества требуется минимум две перегонки с разделением на фракции хотя бы при одной из них. Высокая, при правильном подходе отсекаются все вредные вещества.
Потери спирта Высокие. Даже при правильном подходе можно извлечь до 80% от всего количества, сохранив приемлемое качество. Низкие. Теоретически, реально извлечь весь этиловый спирт без потери качества. На практике минимум 1-3% потерь.
Сложность технологии для реализации в домашних условиях Низкая и средняя. Подходит даже самый примитивный аппарат со змеевиком. Возможны улучшения оборудования. Технология перегонки проста и понятна. Самогонный аппарат обычно не занимает много места в рабочем состоянии. Высокая. Требуется специальное оборудование, изготовить которое без знаний и опыта невозможно. Процесс сложнее для понимания, нужна предварительная хотя бы теоретическая подготовка. Колонна занимает больше места (особенно по высоте).
Опасность (в сравнении друг с другом), оба процесса пожаро- и взрывоопасны. Благодаря простоте самогонного аппарата дистилляция несколько безопаснее (субъективное мнение автора статьи). Из-за сложного оборудования, при работе с которым существует риск допустить больше ошибок, ректификация опаснее.

Работа ректификационной колонны

Ректификационная колонна – устройство, предназначенное для разделения многокомпонентной жидкой смеси на отдельные фракции по температуре кипения. Представляет собой цилиндр постоянного или переменного сечения, внутри которого находятся контактные элементы – тарелки или насадки.

Также почти каждая колонна имеет вспомогательные узлы для подвода исходной смеси (спирта-сырца), контроля процесса ректификации (термометры, автоматика) и отбора дистиллята – модуль, в котором конденсируется, а затем принимается наружу извлеченный из системы пар определенного вещества.

Одна из самых распространенных домашних конструкции

Спирт-сырец – продукт перегонки браги методом классической дистилляции, который можно «заливать» в ректификационную колонну. Фактически это самогон крепостью 35-45 градусов.

Флегма – сконденсировавшийся в дефлегматоре пар, стекающий по стенкам колонны вниз.

Флегмовое число – отношение количества флегмы к массе отбираемого дистиллята. В спиртовой ректификационной колонне находятся три потока: пар, флегма и дистиллят (конечная цель). В начале процесса дистиллят не отбирают, чтобы в колонне появилась достаточно флегмы для тепломассообмена. Потом часть паров спирта конденсируют и отбирают из колонны, а оставшиеся спиртовые пары и дальше создают поток флегмы, обеспечивая нормальную работу.

Для работы большинства установок флегмовое число должно быть не меньше 3, то есть 25% дистиллята отбирают, остальной – нужен в колонне для орошения контактных элементов. Общее правило: чем медленнее отбирать спирт, тем выше качество.

Контактные устройства ректификационной колонны (тарелки и насадки)

Отвечают за многократное и одновременное разделение смеси на жидкость и пар с последующей конденсацией пара в жидкость – достижение в колонне состояния равновесия. При прочих равных условиях, чем больше в конструкции контактных устройств, тем эффективнее ректификация в плане очистки спирта, поскольку увеличивается поверхность взаимодействия фаз, что интенсифицирует весь тепломасообмен.

Теоретическая тарелка – один цикл выхода из равновесного состояния с повторным его достижением. Для получения качественного спирта требуется минимум 25-30 теоретических тарелок.

Физическая тарелка – реально работающее устройство. Пар проходит сквозь слой жидкости в тарелке в виде множества пузырьков, создающих обширную поверхность контакта. В классической конструкции физическая тарелка обеспечивает примерно половину условий для достижения одного равновесного состояния. Следовательно, для нормальной работы ректификационной колонны требуется в два раза больше физических тарелок, чем теоретических (расчетных) минимум – 50-60 штук.

Насадки. Зачастую тарелки ставят только на промышленные установки. В лабораторных и домашних ректификационных колоннах в качестве контактных элементов используются насадки – скрученная специальным образом медная (либо стальная) проволока или сетки для мытья посуды. В этом случае флегма стекает тонкой струйкой по всей поверхности насадки, обеспечивая максимальную площадь контакта с паром.



Насадки из мочалок самые практичные

Конструкций очень много. Недостаток самодельных проволочных насадок – возможная порча материала (почернение, ржавчина), заводские аналоги лишены подобных проблем.

Свойства ректификационной колонны

Материал и размеры. Цилиндр колонны, насадки, куб и дистилляторы обязательно делают из пищевого, нержавеющего, безопасного при нагревании (равномерно расширяется) сплава. В самодельных конструкциях в качестве куба чаще всего используются бидоны и скороварки.

Минимальная длина трубы домашней ректификационной колонны – 120-150 см, диаметр – 30-40 мм.

Система нагрева. В процессе ректификации очень важно контролировать и быстро регулировать мощность нагрева. Поэтому самым удачным решением является нагрев с помощью ТЭНов, вмонтированных в нижнюю часть куба. Подвод тепла через газовую плиту не рекомендуется, поскольку не позволяет быстро менять температурный диапазон (высокая инертность системы).

Контроль процесса. Во время ректификации важно следовать инструкции производителя колонны, в которой обязательно указываются особенности эксплуатации, мощность нагрева, флегмовое число и производительность модели.



Термометр позволяет точно контролировать процесс отбора фракций

Очень сложно контролировать процесс ректификации без двух простейших приспособлений – термометра (помогает определить правильную степень нагрева) и спиртометра (измеряет крепость полученного спирта).

Производительность. Не зависит от размеров колонны, поскольку, чем выше царга (труба), тем больше физических тарелок находится внутри, следовательно, качественнее очистка. На производительность влияет мощность нагрева, которая определяет скорость движения потоков пара и флегмы. Но при переизбытке подаваемой мощности колонна захлебывается (перестает работать).

Средние значения производительности домашних ректификационных колон – 1 литр в час при мощности нагрева 1 кВт.

Влияние давления. Температура кипения жидкостей зависит от давления. Для успешной ректификации спирта давление вверху колонны должно быть приближено к атмосферному – 720-780 мм.рт.ст. В противном случае при уменьшении давления снизится плотность паров и увеличится скорость испарения, что может стать причиной захлебывания колонны. При слишком высоком давлении падает скорость испарения, делая работу устройства неэффективной (нет разделения смеси на фракции). Для поддержания правильного давления каждая колонна для ректификации спирта оборудована трубкой связи с атмосферой.

О возможности самодельной сборки. Теоретически, ректификационная колонна не является очень сложным устройством. Конструкции успешно реализуются умельцами в домашних условиях.

Но на практике без понимания физических основ процесса ректификации, правильных расчетов параметров оборудования, подбора материалов и качественной сборки узлов, использование самодельной ректификационной колоны превращается опасное занятие. Даже одна ошибка может привести к пожару, взрыву или ожогам.

В плане безопасности прошедшие испытания (имеют подтверждающую документацию) заводские колонны надежнее, к тому же поставляются с инструкцией (должна быть подробной). Риск возникновения критической ситуации сводится только к двум факторам – правильной сборке и эксплуатации согласно инструкции, но это проблема почти всех бытовых приборов, а не только колонн или самогонных аппаратов.

Принцип работы ректификационной колонны

Куб наполняют максимум на 2/3 объема. Перед включением установки обязательно проверяют герметичность соединений и сборки, перекрывают узел отбора дистиллята и подают охлаждающую воду. Только после этого можно начать нагрев куба.

Оптимальная крепость подаваемой в колонну спиртосодержащей смеси – 35-45%. То есть в любом случае перед ректификацией требуется дистилляция браги. Полученный продукт (спирт-сырец) потом перерабатывают на колонне, получая почти чистый спирт.

Это значит, что домашняя ректификационная колонна не является полной заменой классического самогонного аппарата (дистиллятора) и может рассматриваться лишь как дополнительная ступень очистки, более качественно заменяющая повторную дистилляцию (вторую перегонку), но нивелирующая органолептические свойства напитка.

Справедливости ради отмечу, что большинство современных моделей ректификационных колон предполагают работу в режиме самогонного аппарата. Для перехода к дистилляции нужно лишь перекрыть штуцер соединения с атмосферой и открыть узел отбора дистиллята.

Если одновременно перекрыть оба штуцера, то нагретая колонна может взорваться из-за избыточного давления! Не допускайте подобных ошибок!

На промышленных установках непрерывного действия зачастую брагу перегоняют сразу, но это возможно благодаря гигантским размерам и особенностям конструкции. Например, стандартом считается труба 80 метров высоты и 6 метров диаметра, в которой установлено в разы больше контактных элементов, чем на ректификационных колоннах для дома.



Размер имеет значение. Возможности спиртзаводов в плане очистки куба больше, чем при домашней ректификации

После включения жидкость в кубе доводится нагревателем до кипения. Образовавшийся пар поднимается вверх по колонне, затем попадает в дефлегматор, где конденсируется (появляется флегма) и по стенкам трубы возвращается в жидком виде в нижнюю часть колонны, на обратном пути контактируя с поднимающимся паром на тарелках или насадках. Под действием нагревателя флегма снова становится паром, а пар вверху опять конденсируется дефлегматором. Процесс становится циклическим, оба потока непрерывно контактируют друг с другом.

После стабилизации (пара и флегмы достаточно для равновесного состояния) в верхней части колонны скапливаются чистые (разделенные) фракции с самой низкой температурой кипения (метиловый спирт, уксусный альдегид, эфиры, этиловый спирт), внизу – с самой высокой (сивушные масла). По мере отбора нижние фракции постепенно поднимаются вверх по колонне.

В большинстве случаев стабильной (можно начинать отбор) считается колонна, в которой температура не меняется на протяжении 10 минут (общее время прогрева – 20-60 минут). До этого момента устройство работает «само на себя», создавая потоки пара и флегмы, которые стремятся к равновесию. После стабилизации начинается отбор головной фракции, содержащей вредные вещества: эфиры, альдегиды и метиловый спирт.

Ректификационная колонна не избавляет от необходимости разделять выход на фракции. Как и в случае с обычным самогонным аппаратом приходится собирать «голову», «тело» и «хвост». Разница только в чистоте выхода. При ректификации фракции не «смазываются» – вещества с близкой, но хотя бы на десятую долю градуса разной температурой кипения не пересекаются, поэтому при отборе «тела» получается почти чистый спирт. Во время обычной дистилляции разделить выход на фракции, состоящие только из одного вещества, невозможно физически какая бы конструкция не использовалась.

Если колонна выведена на оптимальный режим работы, то при отборе «тела» трудностей не возникает, так как температура всё время стабильна.

Нижние фракции («хвосты») при ректификации отбирают, ориентируясь по температуре или по запаху, но в отличие от дистилляции эти вещества не содержат спирта.

Возвращение спирту органолептических свойств. Зачастую «хвосты» требуются, чтобы вернуть спирту-ректификату «душу» – аромат и вкус исходного сырья, например, яблока или винограда. После завершения процесса в чистый спирт добавляют некоторое количество собранных хвостовых фракций. Концентрацию рассчитывают эмпирическим путем, экспериментируя на небольшом количестве продукта.

Преимущество ректификации в возможности добыть практически весь содержащийся в жидкости спирт без потери его качества. Это значит, что «головы» и «хвосты», полученные на самогонном аппарате, можно переработать на ректификационной колонне и получить безопасный для здоровья этиловый спирт.

Захлебывание ректификационной колонны

Каждая конструкция имеет предельную скорость движения пара, после которой течение флегмы в кубе сначала замедляется, а потом и вовсе прекращается. Жидкость накапливается в ректификационной части колонны и происходит «захлебывание» – прекращение тепломассообменного процесса. Внутри происходит резкий перепад давления, появляется посторонний шум или бульканье.

Причины захлебывания ректификационной колонны:

  • превышение допустимой мощности нагрева (встречается наиболее часто);
  • засорение нижней части устройства и переполнение куба;
  • очень низкое атмосферное давление (характерно для высокогорий);
  • напряжение в сети выше 220В – в результате мощность ТЭНов возрастает;
  • конструктивные ошибки и неисправности.

Многоколпачковая тарелка с круглыми колпаками - наиболее распространенная (рис. 7.68). Она имеет металлическое полотно с отверстиями для паровых патрубков, которые прикреплены к полотну.

Над патрубками устанавливаются колпачки, чаще всего диаметром 60 и 80мм. Колпачки имеют прорези высотой 15, 20 или 30мм Для создания необходимого уровня жидкости используют переливные трубки, которые располагаются по диаметру, или сегментные переливные перегородки. Прорези колпачков должны быть погружены в жидкость, потому переливные трубки и перегородки выступают над тарелкой на определенную высоту. Пар поступает через паровой патрубок, проходит через прорези и барботирует сквозь слой жидкости. При взаимодействии пара и жидкости образуется мелкопористая пена и проходит обмен компонентами между фазами. На тарелке имеет место перекрестное течение жидкости и пара. Эти тарелки принадлежат к группе барботажных контактных устройств. Жидкость перетекает вниз из тарелки на тарелку через переливные устройства (стаканы). Навстречу снизу вверх проходит пар.

Колпачковые контактные устройства имеют широкий интервал устойчивой работы, относительно высокий коэффициент полезного действия (0,5-0,7), но имеют большое гидравлическое сопротивление и могут использоваться для переработки чистой жидкости. Недостатком также является значительная металлоемкость и сложность изготовления.

Одноколпачковая тарелка работает аналогично многоколпачковой. Одноколпачковые тарелки хорошо работают в колоннах малого диаметра. С увеличением диаметра эффективность их работы уменьшается.

Многоколпачковые тарелки используются в колоннах брагоректификационных установок: эпюрационных, спиртовых, сивушных, конечной очистки. Используют их также в концентрационной части брагоперегонных установок для получения спирта-сырца. В современных установках эпюрационные колонны имеют 39-40 многоколпачковых тарелок, а спиртовые 71 - 74.

Бражные колонны брагоректификационной установки и истощающая часть колонны брагоперегонной установки оснащены одноколпачковыми тарелками. Они могут использоваться для перегонки бражки и других жидкостей, которые содержат суспендированные твердые частицы.

Сетчатая тарелка является одним из самых простых тарельчатых контактных устройств (рис. 7.69.). Это перфорированный металлический диск с отверстиями диаметром 2-12 мм, которые размещаются на плоскости тарелки по вершинам равносторонних треугольников. Тарелка укрепляется горизонтально в колонне. Для поддержания определенного уровня жидкости в колоннах малого диаметра применяются переливные трубки, нижние концы которых погружены в сплошные стаканы. В колоннах большего диаметра используют сегментные переливные перегородки. Пар, который поднимается в колонне, проходит сквозь отверстия тарелки и распределяется в слое жидкости в виде пузырьков и струек. При этом происходит массообмен между фазами. Сетчатые тарелки имеют большее свободное сечение (плоскость отверстий), чем колпачковые, потому производительность их по пару на 30-40 % превышает колпачковые. Уровень жидкости на тарелке поддерживается определенным давлением в колонне. При уменьшении давления жидкость может протечь через отверстия по всей плоскости тарелки или отдельных ее частях, что ухудшает массообмен. Это может произойти также при неточном установлении (перекосе) тарелок.

Сетчатые тарелки эффективны, просты в изготовлении, имеют малую металлоемкость, но нуждаются в точном горизонтальном монтаже.

Сетчатые тарелки применяются в бражных колоннах большого диаметра (> 1400 мм).

Провальные контактные тарелки .В этих тарелках пар и жидкость проходят через одни и те же отверстия, потому они имеют больше, чем сетчатые, свободное сечение (12-20 %). Эти конструкции не нуждаются в переливных устройствах и имеют большую рабочую площадь.

Решетчатые провальные тарелки изготовляются из стальных или медных листов толщиной 3-5 мм. Щели штампуются или фрезеруются шириной 2-6 мм и длиной 60-200 мм. На соседних тарелках щели располагаются взаимно перпендикулярно. Такие тарелки просты по конструкции, их пропускная способность по жидкости больше чем в сетчатых, но они имеют узкий диапазон стабильной работы. Решетчатые провальные тарелки рекомендуется использовать в бражных колоннах.

Чешуеобразная тарелка (рис. 7.70) изготавливается из металлического листа, в котором в шахматном порядке штампуется арочная чешуя. Угол наклона составляет 15-20°. Изменение свободного сечения тарелки (рекомендуется 8-15 %) достигается изменением количества чешуек. Тарелка имеет утопленные приемные и сливные сегменты. К сливному сегменту прикреплена переливная труба. Поток пара, который перемещается в колонне, изменяет направление движения при прохождении через чешую, прорези которой направлены в сторону движения жидкости. Направленный паровой поток увеличивает скорость жидкости, которая перемещается с подъемом в сторону слива. В рабочем струйном режиме пар интенсивно турбулизирует жидкостной поток, значительная часть парожидкостной смеси поднимается над тарелкой и двигается в межтарельчатом пространстве. Чешуеобразные тарелки работают при высоких скоростях пара и незначительном брызговыносе, имеют высокую эффективность (КПД 0.5-0.7) .

Этот тип тарелок рекомендуется применять в бражных колоннах диаметром больше 1,4 м при перегонке бражки из измельченного зерно-картофельного сырья. Бражная колонна с чешуеобразными тарелками характеризуется широким диапазоном стабильной работы, большей на 20-40 % производительностью сравнительно с типичными бражными колоннами, способствует улучшению качества спирта.

Клапанные тарелки . Металлическое плоское полотно тарелки имеет круглые или квадратные отверстия, которые закрыты клапанами. Соответственно изготовляют дисковые и прямоугольные клапаны (рис. 7.71). При перемещении в колонне пара снизу вверх клапаны немного поднимаются, пар проходит сквозь прорез, который образовался, и контактирует с жидкостью, которая находится на тарелке. С увеличением количества пара клапан поднимается выше. Проходное сечение увеличивается, а скорость движения пара не меняется. Высота подъема клапана составляет 6-8 мм и ограничивается кронштейном-ограничителем. Клапанные тарелки оснащены также переливными устройствами и могут работать в режимах с перекрестным и прямоточным взаимодействием фаз. В последнем случае клапаны имеют ограничители разной длины.

На современном этапе клапанными тарелками оснащают бражные и эпюрационные колонны. В ректификационных установках для переработки вторичного сырья виноделия и дистилляции масляных мисцел используют вихревые контактные устройства.