Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

Лестницы. Входная группа. Материалы. Двери. Замки. Дизайн

» » Производство минеральных удобрений в россии. Минеральные удобрения, произведенные в россии

Производство минеральных удобрений в россии. Минеральные удобрения, произведенные в россии

Во многих странах сельскохозяйственная отрасль испытывает недостаток земельных ресурсов – из-за огромных темпов роста аграрной промышленности и истощения земледельческих угодий. Поддерживать плодородие почв естественным способом удается далеко не всегда – для накопления питательных веществ земля нуждается в длительном отдыхе. Решением проблемы является искусственное удобрение грунтов химическими элементами, необходимыми для полноценного развития растений. В нашей стране этот метод применяется с конца XIX века, когда производство минеральных удобрений в России (подкормок на основе фосфора) приобрело промышленные масштабы.

До развития химической промышленности фермеры использовали навоз, золу, компост и другую органику, на основе которой производятся современные . Внесение таких подкормок требовало значительных трудозатрат, а питание растений начиналось только после разложения органических веществ. Применение составов с быстроусвояемыми элементами сразу дало видимый результат – урожайность сельскохозяйственных культур существенно повысилась. Положительный эффект от химических подкормок подвигнул ученых на активные исследования, которые выявили основные вещества для полноценного развития растений – азот, калий и фосфор. В итоге производство минеральных удобрений в России (и в других странах мира) сосредоточилось именно в этих направлениях.

Мировая роль России в производстве химических подкормок

На сегмент минеральных удобрений приходится существенная доля отечественного химического комплекса. Градация объемов выпуска основных видов подкормок не меняется уже много лет и выглядит следующим образом: азотные удобрения – 49%, калиевые – 33%, фосфатные – 18%. Примерно третья часть от всех выпускаемых подкормок идет на экспорт, что составляет около 7% мирового рынка. Даже в условиях кризиса наша страна сохраняет стабильные позиции, что объясняется не только большими запасами природного сырья, но и современной производственно-технологической базой. В настоящий момент Россия входит в тройку мировых экспортеров и удовлетворяет спрос многих стран на азотные, калийные и . Среди основных потребителей отечественных подкормок традиционно выделяется Китай и латиноамериканские страны.

Крупнейшие отечественные производители удобрений

  • Азот. Центры производства азотных удобрений – это Ставропольский край и Тульская область. В этих регионах находятся два крупных предприятия – «Невинномысский Азот» и НАК «Азот», основным продуктом которых являются .
  • Калий . Центр производства калийных удобрений – Урал. Здесь также лидируют две компании – «Уралкалий» (г. Березники) и «Сильвинит» (г. Соликамск). Выпуск калийных удобрений именно на Урале неслучаен – заводы сосредоточены вокруг Верхнекамского месторождения калийсодержащих руд, что существенно удешевляет конечную стоимость подкормок.
  • Фосфор . Удобрения на основе фосфора выпускают около 15 российских химических заводов. Наиболее крупные – «Воскресенские минеральные удобрения» и «Акрон» – находятся в Великом Новгороде. Нужно отметить, что эти предприятия являются наиболее рентабельными – их промышленный потенциал задействован на 80%, тогда как другие компании работают лишь вполовину имеющихся мощностей.

Несмотря на общую стабильность, производство минеральных удобрений в России не избежало негативного влияния кризиса, особенно в калийном секторе. Проблемы связаны с падающим спросом внутри страны – из-за снижения покупательской способности крупных агропромышленных комплексов. Ситуацию спасает экспортная ориентация калийной подотрасли – до 90% продукции активно раскупается другими странами. Кроме того, предприятия поддерживаются государством – правительство РФ имеет оптимистичный настрой, ведь развитие мировой экономики стимулирует рост земледелия и поддерживает стабильный спрос на минеральные удобрения. В такой ситуации наша страна с богатыми рудными/газовыми месторождения и отлаженным производством имеет все шансы стать мировым лидером по объемам выпуска и реализации химических подкормок.

Современное сельское хозяйство невозможно представить без активного использования минеральных удобрений. Благодаря им сельхозпредприятия получают сегодня высокие урожаи, которых достаточно, чтобы прокормить постоянно урбанизирующийся мир. Можно с уверенностью говорить о том, что без минеральных удобрений продукты питания стоили бы значительно дороже, а их нехватка была бы серьезным фактором сдерживания для роста человеческой популяции. Именно поэтому производство минеральных удобрений является важной отраслью отечественной экономики.

Что такое минеральные удобрения?

Минеральными удобрениями называют неорганические вещества, используемые для подкормки сельскохозяйственных растений, ускорения их роста.

Питательные вещества, содержащиеся в таких удобрениях, имеют вид минеральных солей. В простых удобрениях есть только один элемент, например, только фосфор. Комплексные удобрения имеют в своем составе не менее двух таких элементов.

Все неорганические удобрения подразделяются на фосфорные, азотные, калиевые, сложные и микроудобрения. Их получают путем сложных химических и физических реакций на предприятиях химической промышленности. Это могут быть как крупные производственные комплексы, на которых работают десятки тысяч рабочих, так и относительно небольшие цеха на несколько десятков или сотен специалистов.

Зачем нужны минеральные удобрения?

В почве изначально содержится некоторое количество всех необходимых растениям веществ. Однако их концентрация почти всегда крайне невысока и не сбалансирована. Иными словами, растениям всегда не хватает одного или нескольких микроэлементов, поэтому развитие происходит медленнее.

Покрывая дефицит питательных веществ в почве, мы получаем возможность значительно ускорить рост растений, позволяя им раскрыть весь свой потенциал, а не малую его часть. В современном сельском хозяйстве применение удобрений является обязательным агротехническим приемом. Благодаря ему фермеры могут получать более высокие урожаи с меньшей площади пашни. При этом прогресс не стоит на месте и производство новых минеральных удобрений, всё более совершенных и эффективных, продолжается постоянно.

Необходимость в использовании удобрений объясняется несколькими ключевыми факторами:

  • Демографический. На фоне быстрого роста населения в последние два века, площадь пригодной для обработки земли осталась неизменной. Чтобы прокормить растущее население при ограниченных земельных ресурсах, необходимо повышать урожайность.
  • Экологический. В процессе выращивания культурных растений неизбежно происходит истощение земли, поскольку люди забирают урожай себе, и он не возвращается обратно в землю в качестве природного удобрения. Единственный способ поддерживать и даже увеличивать плодородность почвы - это искусственное внесение удобрений.
  • Экономический. С точки зрения производственных затрат сельхозпредприятиям выгоднее повышать плодородность почвы и собирать высокие урожаи на малой площади, чем обрабатывать огромные площади, собирая скудный урожай. Иными словами, даже с учетом затрат на удобрения собрать 10 тонн продукции с одного гектара - это всегда выгоднее, чем 10 тонн с 10 гектар.

Использование удобрений стало логичным шагом в развитии интенсивного сельского хозяйства. Практика применения органических удобрений, в первую очередь навоза, насчитывает многие тысячи лет. С развитием химии люди стали задумываться о возможностях использования неорганических удобрений, поскольку они более эффективны. Первое предприятие по производству минеральных удобрений открылось в Англии в первой половине XIX века. Вскоре использование агрохимии стало повсеместным.

Главным преимуществом минеральных удобрений перед органическими является их более высокая эффективность. Поскольку минералы находятся в уже готовой для питания растений форме и после попадания в почву не нуждаются в прохождении стадии разложения, они начинают действовать существенно быстрее.

Производство минеральных удобрений в России

Получение удобрений является одним из важнейших направлений отечественной химической промышленности. Российские химкомбинаты не только полностью обеспечивают внутренние потребности страны в данной продукции, но и активно экспортируют ее за рубеж. Согласно данным статистики, более 80% производимых в России минеральных удобрений отправляется на экспорт.

Сегодня в нашей стране работает более трех десятков крупных и химкобинатов и десятки мелких цехов, совокупно выпускающих около 20 млн. тонн удобрений в год, что составляет около 7% мирового производства. Столь высокие показатели в мировом масштабе объясняются главным образом тем, что Россия располагает большими запасами сырья, из которого производятся минеральные удобрения - калийных руд, природного газа, кокса и др.

География расположения предприятий, специализирующихся на данном виде производства, основана на близости источников сырья. Например, сырье для производства минеральных удобрений азотной группы - это аммиак. Его получают в основном из кокса. Долгое время выпуском этих удобрений занимались специализированные подразделения металлургических предприятий. Центрами такого производства являются города Челябинск, Кемерово, Липецк, Магнитогорск и др.

Развитие технологий позволило освоить еще один вид аммиачного сырья - природный газ. Сегодня заводы, работающие по этой технологии, уже не привязаны к центрам добычи и могут располагаться просто вблизи от крупных газопроводов.

Существует технология производства минеральных удобрений азотной группы, которая использует в качестве сырья отходы нефтепереработки. Такие комбинаты работают в Ангарске и Салавате.

При получении фосфорных соединений предприятия не так сильно привязаны к сырьевой базе. А с учетом того, что фосфаты в России добывают в основном в Заполярье, расположение предприятий вдали от мест добычи оправдано вдвойне: проще перевезти сырье в густозаселенные регионы, чем строить завод и жилье для рабочих на крайнем севере. Основные мощности по выпуску удобрений фосфатной группы сосредоточены гораздо южнее.

Впрочем, эти удобрения продают также и металлургические предприятия, использующие в качестве сырья собственные технологические газы. Одним из крупнейших производителей этого типа является город Красноуральск.

Свое предприятие по производству минеральных удобрений

Долгое время производство минеральных удобрений в России было возможно только на крупных предприятиях-гигантах. Постоянное совершенствование технологий в химической промышленности изменило ситуацию. Сегодня создание относительно небольшого цеха по выпуску неорганических удобрений под силу даже частным лицам. Однако следует учесть несколько ключевых моментов:

  • Это достаточно сложный вид производства, который потребует не только закупки сложного и дорогостоящего оборудования, но и найма высококвалифицированных специалистов.
  • Потребуется пройти девять кругов ада, чтобы получить все необходимые разрешения и согласования от государства. За предприятиями химической промышленности контроль довольно строгий.
  • Объем инвестиций в открытие даже относительно небольшого завода (или даже цеха) будет исчисляться десятками миллионов рублей.

Также следует отметить, что малое предприятие по производству удобрений может освоить лишь некоторые наиболее простые вещества. Технология производства сложных минеральных удобрений по-прежнему по зубам лишь крупным промышленным комплексам, о создании которых говорить здесь нет никакого смысла.

Сегодня на рынке оборудования достаточно много предложений как от отечественных, так и от зарубежных производителей. Примечательно, что отечественные производственные линии для малых предприятий по производству удобрений практически ничем не уступают западным аналогам. В этой связи нет острой необходимости с самого начала покупать более дорогое импортное оборудование для производства минеральных удобрений. Наоборот, отечественные машины даже более приспособлены к российскому сырью, с которым и придется работать в конечном итоге.

Важной составляющей успеха при открытии собственного завода минеральных удобрений является поиск поставщиков сырья. Это достаточно специфическая продукция, которую не так-то легко приобрести. Следует заранее изучить этот вопрос и проанализировать все возможные варианты. Разумнее всего открывать подобный бизнес рядом с производителями сырья.


Федеральное агентство по образованию

Тверской государственный технический университет

Кафедра «Технологии полимерных материалов»

Производство минеральных удобрений

Выполнила: Томилина О.С.

ФАС, группа БТ-0709

Проверил: Комаров А. М.

Минеральными удобрениями называют соли, содержащие элементы, необходимые для питания растений и вносимые в почву для получения высоких и устойчивых урожаев. Минеральные удобрения являются одним из важнейших видов продукции химической промышленности. Рост численности населения выдвигает перед всеми странами мира одну и ту же проблему – умелое управление способностью природы воспроизводить жизненные ресурсы и прежде всего продовольственные. Задача расширенного воспроизводства продуктов питания уже давно решается применением в сельском хозяйстве минеральных удобрений. Научными прогнозами и перспективными планами предусматривается дальнейшее увеличение мирового выпуска минеральных и органоминеральных удобрений, удобрений с регулируемым сроком действия.

Производство минеральных удобрений - одна из важнейших подотраслей химической промышленности, его объем во всем мире составляет более 100млн. т в год. В наибольших количествах вырабатывают и потребляют соединения натрия, фосфора, калия, азота, алюминия, железа, меди, серы, хлора, фтора, хрома, бария и др.

Классификация минеральных удобрений

Минеральные удобрения классифицируют по трем главным признакам: агрохимическому назначению, составу и свойствам.

1. По агрохимическому назначению удобрения делят на прямые, являющиеся источником питательных элементов для растений, и косвенные, служащие для мобилизации питательных веществ почвы улучшением ее физических, химических и биологических свойств. К косвенным удобрениям принадлежат, например, известковые удобрения, применяемые для нейтрализации кислых почв.

Прямые минеральные удобрения могут содержать один или несколько разных питательных элементов.

2. По количеству питательных элементов удобрения подразделяют на простые (одинарные) и комплексные.

В простые удобрения входит только один из трех главных питательных элементов. Соответственно простые удобрения делят на азотные, фосфорные и калийные.

Комплексные удобрения содержат два или три главных питательных элемента. По числу главных питательных элементов комплексные удобрения называют двойными (например, типа NP или РК) или тройными (NPK); последние также называют полными. Удобрения, содержащие значительные количества питательных элементов и мало балластных веществ, называют концентрированными

Комплексные удобрения, кроме того, разделяют на смешанные и сложные. Смешанными называют механические смеси удобрений, состоящие из разнородных частиц, получаемые простым тукосмешением. Если же удобрение, содержащее несколько питательных элементов, получается в результате химической реакции в заводской аппаратуре. Оно называется сложным.

Удобрения, предназначенные для питания растений элементами, стимулирующими рост растений и требующимися в весьма малых количествах, называются микроудобрениями, а содержащиеся в них питательные элементы – микроэлементами. Такие удобрения вносят в почву в очень небольших количествах. К ним относятся соли, содержащие бор, марганец, медь, цинк и другие элементы.

3. По агрегатному состоянию удобрения подразделяют на твердые и жидкие (аммиак, водные растворы и суспензии).

Большое значение имеют физические свойства удобрений. Водорастворимые удобрительные соли должны быть сыпучими, легко рассеиваться, не быть сильно гигроскопичными, не слеживаться при хранении; должны обладать такими, чтобы сохраняться на почве в течение некоторого времени, не слишком быстро вымываться дождевой водой и сдуваться ветром. Этим требованиям в наибольшей мере обладают крупнокристаллические и гранулированные удобрения. Гранулированные удобрения можно вносить не поля механизированными методами с использованием туковых машин и сеялок в количествах, строго соответствующих агрохимическим требованиям.

Фосфорные удобрения

Фосфорные удобрения в зависимости от их состава в различной степени растворимы в почвенных растворах и, следовательно, неодинаково усваиваются растениями. По степени растворимости фосфорные удобрения разделяют на водорастворимые, усвояемые растениями, и нерастворимые фосфаты. К водорастворимым относятся простой и двойной суперфосфаты. К усвояемым, т.е. растворимым в почвенных кислотах, относятся преципитат, термофосфат, плавленые фосфаты и томас-шлак. Нерастворимые удобрения содержат трудноусваемые соли фосфата, растворимые только в сильных минеральных кислотах. К ним фосфоритная мука, апатиты, костяная мука.

Сырьем для производства элементарного фосфата, фосфорных удобрений и других соединений фосфора служат природные фосфаты: апатиты и фосфориты. В этих рудах фосфор находится в нерастворимой форме, главным образом в виде фторапатита Ca 5 F(PO 4) 3 или гидроксилапатита Ca 5 OH(PO 4) 3 . Для получения легкоусваиваемых фосфорных удобрений, применяемых в любых почвах, требуется перевести нерастворимые фосфорные соли природных фосфатов в водорастворимые или легкоусваемые соли. В этом и состоит основная задача технологии фосфорных удобрений.

Растворимость фосфорнокислых солей повышается по мере увеличения их кислотности. Средняя соль Са 3 (РО 4) 2 растворима лишь в минеральных кислотах, СаНО 4 растворима в почвенных кислотах, а наиболее кислая соль СаН 2 РО 4) 2 растворима в воде. В производстве фосфорных удобрений стремятся получить возможно большую часть фосфора в виде монокальцийфосфата Са(Н 2 РО 4) 2 . Перевод нерастворимых природных солей в растворимые осуществляется разложением их кислотами, щелочами,нагреванием (термическая возгонка фосфора). Одновременно с получением растворимых солей стремятся получить фосфорные удобрения с возможно большей концентрацией фосфора.

Производство суперфосфата

Химическая промышленность выпускает простой и двойной суперфосфаты. Простой суперфосфат – самое распространенное фосфорное удобрение. Он представляет собой порошок (или гранулы) серого цвета, содержащий в основном монофосфат кальция Са(Н2РО4)2*Н2О и сульфат кальция СаSO4*0,5Н2О. В состав суперфосфата входят примеси: фосфаты железа и алюминия, кремнезем, а также фосфорная кислота. Сущность производства суперфосфата состоит в разложении природных фосфатов серной кислотой. Процесс получения суперфосфата при взаимодействии серной кислоты с кальцийфторапатитом является многофазным гетерогенным процессом, протекающим в основном в диффузионной области. Этот процесс можно условно разбить на два этапа. Первый этап – это диффузия серной кислоты к частицам апатита, сопровождаемая быстрой химической реакцией на поверхности частиц, которая идет до полного израсходования кислоты, и кристаллизация сульфата кальция:

Ca 5 F(PO 4) 3 + 5H 2 SO 4 +2,5H 2 O=5(CaSO 4 *0,5H 2 O)+H 3 PO 4 +HF+Q (а)

Второй этап – диффузия образовавшейся фосфорной кислоты в порах неразложившихся частиц апатита, сопровождаемая реакцией

Ca 5 F(PO 4) 3 +7H 3 PO 4 +5H 2 O=5Ca(H 3 PO 4) 2 *H 2 O+HF+Q (б)

Образующийся монокальцийфосфат находится сначала в растворе, при перенасыщении которого начинает кристаллизоваться. Реакция (а) начинается сразу же после смещения и заканчивается в реакционной суперфосфатной камере в течении 20-40 мин в период схватывания и затвердения суперфосфатной массы, которые происходят за счет сравнительно быстрой кристаллизации малорастворимого сульфата кальция и перекристаллизации полугидрата в ангидрит по уравнению реакции

2CaSO 4 *0,5H 2 O=2CaSO 4 +H 2 O

Последующая стадия процесса – созревание суперфосфата, т.е. образование и кристаллизация монокальцийфосфата, происходит медленно и заканчивается лишь на складе (дозревание) при вылеживание суперфосфата в течение 6-25сут. Малая скорость этой стадии объясняется замедленной диффузией фосфорной кислоты через образовавшуюся корку монокальцийфосфата, покрывающую зерна апатита, и крайне медленной кристаллизацией новой твердой фазы Са(Н 2 РО 4) 2 *Н 2 О.

Оптимальный режим в реакционной камере определяется не только кинетикой реакций и диффузией кислот, но и структурой образовавшихся кристаллов сульфата кальция, которая влияет на суммарную скорость процесса и качество суперфосфата. Ускорить диффузионные процессы и реакции (а) и (б) можно повышением начальной концентрации серной кислоты до оптимальной температуры.

Наиболее медленным процессом является дозревание. Ускорить дозревание можно охлаждением суперфосфатной массы и испарением из нее воды, что способствует кристаллизации монокальцийфосфата и повышает скорость реакции (б) вследствие увеличения концентрации Н 3 РО 4 в растворе. Для этого на складе перемешивают и распыляют суперфосфат. Содержание Р 2 О 5 в готовом суперфосфате примерно в два раза ниже, чем в исходном сырье, и составляет при переработке апатитов 19-20% Р 2 О 5.

Готовый суперфосфат содержит некоторое количество свободной фосфорной кислоты, увеличивающей его гигроскопичность. Для нейтрализации свободной кислоты суперфосфат смешивают нейтрализующими твердыми добавками или аммонизируют, т.е. обрабатывают газообразным аммиаком. Эти мероприятия улучшают физические свойства суперфосфата – уменьшают влажность, гигроскопичность, слеживаемость, а при аммонизации вводится еще один питательный элемент – азот.

Существуют периодические, полунепрерывные и непрерывные способы производства суперфосфата. В настоящее время большинство действующих заводов осуществлют непрерывный способ производства. Схема непрерывного способа производства суперфосфата приведена на рис. 1

Измельченный апатитовый концентрат (или фосфоритная мука) системой транспортеров, шнеков элеваторов передается со склада на автоматический весовой дозатор, из которого дозируется в смеситель непрерывного действия.

Серная кислота (75%-ная башенная H 2 SO 4) непрерывно разбавляется водой в дозаторе-смесителе до концентрации 68% H 2 SO 4 , контролируемой концентратомером, и подается в смеситель, в котором происходит механическое смешивание фосфатного сырья с серной кислотой. Образующаяся пульпа из смесителя передается в реакционную суперфосфатную камеру непрерывного действия, где происходит образование суперфосфата (схватывание и затвердевание пульпы в начальный период созревания суперфосфатной массы). Из суперфосфатной камеры измельченный суперфосфат подкамерным конвейером передается в отделение дообработки – склад суперфосфата, по которому равномерно распределяется разбрасывателем. Для ускорения дозревания суперфосфата его перемешивают на складе грейферным краном. Для улучшения физических свойств суперфосфата его гранулируют во вращающихся барабанах-грануляторах. В грануляторах порошкообразный суперфосфат увлажняется водой, подаваемой внутрь барабана форсунками, и «закатывается» в гранулы различных размеров, которые затем сушат, рассеивают на фракции и тарируют в бумажные мешки.

Основным аппаратом суперфосфатного производства служит суперфосфатная камера. Питание ее пульпой производится из смесителя, укрепленного непосредственно над крышкой камеры. Для непрерывного питания суперфосфатных камер применяются шнековые смесители и камерные смесители с механическим перемешиванием.

Недостатком простого суперфосфата является сравнительно небольшое содержание питательного элемента – не более 20% Р 2 О 5 из апатитового концентрата и не более 15% Р 2 О 5 из фосфоритов. Более концентрированные фосфорные удобрения можно получить при разложении фосфатной породы фосфорной кислоты.

Азотные удобрения

Большинство азотных удобрений получают синтетически: нейтрализацией кислот щелочами. Исходными материалами для получения азотных удобрений служат серная и азотная кислоты, диоксид углерода, жидкий или газообразный аммиак, гидроксид кальция и т.п. Азот находится в удобрениях или в форме катиона NH 4 + , т.е. в аммиачной форме, в виде NH 2 (амидные), или аниона NO 3 - , т.е. в нитратной форме; удобрение одновременно может содержать и аммиачный и нитратный азот. Все азотные удобрения водорастворимы и хорошо усваиваются растениями, но легко выносятся вглубь почвы при обильных дождях или орошении. Распространенным азотным удобрением является нитрат аммония или аммиачная селитра.

Производство аммиачной селитры

Аммиачная селитра – безбалластное удобрение, содержащее 35% азота в аммиачной и нитратной форме, благодаря чему она применяется на любых почвах и для любых культур. Однако это удобрения обладает неблагоприятными для его хранения и применения физическими свойствами. Кристаллы и гранулы аммиачной селитры расплываются на воздухе или слеживаются в крупные агрегаты в результате их гигроскопичности и хорошей растворимости в воде. Кроме того при изменении температуры и влажности воздуха во время хранения аммиачной селитры могут происходить полиморфные превращения. Для подавления полиморфных превращений и повышения прочности гранул аммиачной селитры применяют добавки, вводимые в процессе ее изготовления, - фосфаты и сульфаты аммония, борную кислоту, нитрат магния и др. Взрывоопасность аммиачной селитры осложняет ее производство, хранение и транспортировку.

Аммиачную селитру производят на заводах, вырабатывающих синтетический аммиак и азотную кислоту. Производственный процесс складывается из стадий нейтрализации слабой азотной кислоты газообразным аммиаком, упарки полученного раствора и гранулирования аммиачной селитры. Стадия нейтрализации основана на реакции

NH 3 +HNO 3 =NH 4 NO 3 +148, 6 кДж

Этот хемосорбционный процесс, при котором поглощение газа жидкостью сопровождается быстрой химической реакцией, идет в диффузионной области и сильно экзотермичен. Теплота нейтрализации рационально используется для испарения воды из растворов нитрата аммония. Применяя азотную кислоту высокой концентрации и подогревая исходные реагенты, можно непосредственно получить плав аммиачной селитры (конценрацией выше 95-96% NH 4 NO 3) без применения выпаривания.

Наиболее распространены схемы с неполным упариванием раствора аммиачной селитры за счет теплоты нейтрализации (рис. 2).

Основная масса воды упаривается в химическом реакторе –нейтрализаторе ИТН (использование теплоты нейтрализации). Этот реактор – цилиндрический сосуд из нержавеющей стали, внутри которого находится другой цилиндр, куда непосредственно вводится аммиак и азотная кислота. Внутренний цилиндр служит нейтрализационной частью реактора (зона химической реакции), а кольцевое пространство между внутренним цилиндром и корпусом реактора – испарительной частью. Образовавшийся раствор аммиачной селитра поступает из внутреннего цилиндра в испарительную часть реактора, где испарение воды происходит за счет теплообмена между нейтрализационной и испарительной зонами через стенку внутреннего цилиндра. Образовавшийся соковый пар отводится из нейтрализатора ИТН и используется затем как греющий агент.

Сульфатно-фосфатная добавка дозируется в азотную кислоту в виде концентрированных серной и фосфорной кислот, которые нейтрализуются вместе с азотной аммиаком в нейтрализаторе ИТН. При нейтрализации исходной азотной кислоты 58%-ный раствор аммиачной селитры на выходе из ИТН содержит 92-93% NH 4 NO 3 ; этот раствор направляется в донейтрализатор, в который подается газообразный аммиак с таким расчетом, чтобы раствор содержал избыток аммиака (около 1 г/дм 3 своб. NH 3), что обеспечивает безопасность дальнейшей работы с плавом NH 4 NO 3 . Донейтрализованный раствор концентрируют в комбинированном тарельчатом трубчатом выпарном аппарате с получением плава, содержащего 99,7-99,8% NH 4 NO 3 . Для гранулирования высококонцентрированной аммиачной селитры плав погруженными насосами перекачивается наверх грануляционной башни высотой 50-55м. Гранулирование производится разбрызгиванием плава с помощью акустических виброгрануляторов ячеечного типа, обеспечивающих однородный гранулометрический состав продукта. Охлаждение гранул производится воздухом в холодильнике кипящего слоя, состоящем из нескольких последовательных ступеней охлаждения. Охлажденные гранулы опрыскиваются ПАВ в барабане с форсунками и передаются на упаковку.

Ввиду недостатков аммиачной селитры целесообразно изготовление на ее основе сложных и смешанных удобрений. Смешением аммиачной селитры с известняком, сульфатом аммония получают известково-аммиачную селитру, сульфатнитрат аммония и др. Нитрофоску можно получить сплавлением NH 4 NO 3 с солями фосфора и калия.

Производство карбамида

Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большой устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т.е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрения, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для поучения пластмасс, клеев, лаков и покрытий.

Карбамид CO(NH 2) 2 – белое кристаллическое вещество, содержащее 46.6% азота. Его получение основано на реакции взаимодействия аммиака с диоксидом углерода

2NH 3 +CO 2 =CO(NH 2) 2 +H 2 O H=-110,1 кДж (1)

Таким образом, сырьем для производства карбамида служат аммиак т диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака.

Реакция (1) – суммарная; она протекает в две стадии. На первой стадии происходит синтез карбамата:

2NH 3 +CO 2 =NH 2 COONH 4 H=-125,6 кДж (2)

газ газ жидкость

На второй стадии протекает эндотермический процесс отщепления воды от молекул карбамата, в результате которого и происходит образование карбамида:

NH 2 COONH 4 = CO(NH 2) 2 + Н 2 О Н=15.5 (3)

жидкость жидкость жидкость

Реакция образования карбамата аммония – обратимая экзотермическмя, протекает с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того, чтобы процесс протекал с достаточно высокой скоростью, необходимы и повешенные температуры. Увеличение давления компенсирует отрицательное влияние высоких температур на смещение равновесия реакции в обратную сторону. На практике синтез карбамида проводят при температурах 150-190 С и давление 15-20 МПа. В этих условиях реакция протекает с высокой скоростью и до конца.

Разложение карбомата аммония – обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температуре ниже 98С (эвтектическая точка для системы CO(NH 2) 2 - NH 2 COONH 4).

Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамата в карбамид достигается при 220С. Для смещения равновесия этой реакции вводят также избыток аммиака, который связывая реакционную воду, удаляет ее из сферы реакции. Однако добиться полного превращения карбамата в карбамид все же не удается. Реакционная смесь по мимо продуктов реакции (карбамида и воды) содержит также карбамат аммония и продукты его разложения – аммиак и СО 2 .

Для полного использования исходного сырья необходимо либо предусмотреть возвращение непрореагировавших аммиака и диоксида углерода, а также углеаммонийных солей (промежуточных продуктов реакции) в колонну синтеза, т.е. создание рецикла, либо отделение карбамида от реакционной смеси и направление оставшихся реагентов на другие производства, например на производство аммиачной селитры, т.е. проведение процесса по открытой схеме.

В крупнотоннажном агрегате синтеза карбамида с жидкостным рециклом и применением стриппинг-процесса (рис. 3) можно выделить узел высокого давления, узел низкого давления и систему грануляции. Водный раствор карбамата аммония и углеаммонийных солей, а также аммиак и диоксид углерода поступают в нижнюю часть колонны синтеза 1 из карбаматного конденсатора высокого давления 4. В колонне синтеза при температуре 170-190С и давлении 13-15 МПа заканчивается образование карбамата и протекает реакция синтеза карбамида. Расход реагентов подбирают таким образом, чтобы в реакторе молярное отношение NH 3:CO 2 составляло 2,8-2,9. Жидкая реакционная смесь (плав) из колонны синтеза карбамида поступает в отдувочную колонну 5, где стекает по трубам вниз. Противотоком к плаву подают сжатый в компрессоре до давления 13-15МПа диоксид углерода, к которому для образования пассивирующей пленки и уменьшения коррозии оборудования добавлен воздух в количестве, обеспечивающем в смеси концентрацию кислорода 0,5-0,8%. Отдувочная колонна обогревается водяным паром. Парогазовая смесь из колонны 5, содержащая свежий диоксид углерода, поступает в конденсатор высокого давления 4. В него же вводят жидкий аммиак. Он одновременно служит рабочим потоком в инжекторе 3, подающем в конденсатор раствор углеаммонийных солей из скруббера высокого давления 2 и при необходимости часть плава из колонны синтеза. В конденсаторе образуется карбамат. Выделяющуюся при реакции теплоту используют для получения водяного пара.

Из верхней части колонны синтеза непрерывно выходят непрореагировавшие газы, поступающие в скруббер высокого давления 2, в котором большая часть их конденсируется вследствие водного охлаждения, образуя раствор карбамата и углеаммонитйных солей.

Водный раствор карбамида, выходящий из отдувочной колонны 5, содержит 4-5% карбамата. Для окончательного его разложения раствор дросселируют до давления 0,3-0,6 МПа и затем направляют в верхнюю часть ректификационной колонны 8.

Жидкая фаза стекает в колонне вниз по насадке противотоком к парогазовой смеси, поднимающейся снизу вверх. Из верхней части колонны выходят NH 3 ,CO 2 и водяные пары. Водяные пары конденсируются в конденсаторе низкого давления 7, при этом растворяется основная часть аммиака и диоксида углерода. Полученный раствор направляют в скруббер 2. Окончательная очистка газов, выбрасываемых в атмосферу, проводится абсорбционными методами.

70%-ный раствор карбамида, выходящий из нижней части ректификационной колонны 8, отделяют от парогазовой смеси и направляют после снижения давления до атмосферного сначала на выпарку, а затем на грануляцию. Перед распылением плава в грануляционной башне 12 к нему добавляют кондиционирующие добавки, например мочевиноформальдегидную смолу, чтобы получить неслеживающееся удобрение, не портящееся при хранении.

Охрана окружающей среды при производстве удобрений

При производстве фосфорных удобрений велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения охраны окружающей среды, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т.д. Соединения фтора могут попасть в сточные воды на стадиях промывки удобрений, газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбции на оксиде алюминия и др.

Сточные воды производства азотных удобрений, содержащие аммиачную селитру и карбамид, направляют на биологическую очистку, предварительно смешивая их с другими сточными водами в таких соотношениях, чтобы концентрация карбамида не превышала 700мг/л, а аммиака – 65-70мг/л.

Важной задачей в производстве минеральных удобрений является очистка газов от пыли. Особенно велика возможность загрязнения атмосферы пылью удобрений на стадии грануляции. Поэтому газ, выходящий из грануляционных башен, обязательно подвергается пылеочистке сухими и мокрыми методами.

Список литературы

    А.М. Кутепов и др.

Общая химическая технология: Учеб. для вузов/А.М. Кутепов,

Т.И. Бондарева, М.Г. Беренгартен.- 3-е изд., перераб. – М.: ИКЦ «Академкнига». 2003. – 528с.

    И.П. Мухленов, А.Я. Авербух, Д.А Кузнецов, Е.С. Тумаркина,

И.Э. Фурмер.

Общая химическая технология: Учеб. для химико-техн. спец. вузов.

Производства и использования минеральных удобрений ………9 Проблемы охраны окружающей среды в связи с использованием минеральных удобрений ...

  • Производство серной кислоты (5)

    Реферат >> Химия

    Разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), многие... кислоту, которая используется в основном в производстве минеральных удобрений . Сырьем в производстве серной кислоты могут быть элементарная...

  • Производство и эффективность использования удобрений в сельском хозяйстве различных стран

    Реферат >> Экономика

    2) рассмотреть анализ производства и потребления минеральных удобрений , общую динамику внутреннего производства минеральных удобрений в 1988-2007 ... является производство минеральных удобрений . Самым крупным потребителем солей и минеральных удобрений является...

  • Минерально -сырьевая база и территориальная организация химической промышлености

    Реферат >> География

    Влияет главным образом на производство основной химии (производства минеральных удобрений , кроме калийных, серной кислоты... области (Рис. 3). Химическая промышленность представлена производством минеральных удобрений , лаков, красок, серной кислоты. Ведущие...

  • Минеральные удобрения классифицируют по трем главным признакам: агрохимическому назначению, составу, свойствам и способам получения.

    По агрохимическому назначению удобрения разделяют на прямые, являющиеся источником питательных элементов для растений, и косвенные, служащие для мобилизации питательных веществ почвы путем улучшения ее физических, химических и биологических свойств. К косвенным удобрениям принадлежат, например, известковые удобрения, применяемые для нейтрализации кислых почв, структурообразующие удобрения, способствующие агрегированию почвенных частиц тяжелых и суглинистых почв и др.

    Прямые минеральные удобрения могут содержать один или несколько разных питательных элементов. По количеству питательных элементов удобрения подразделяются на простые (односторонние, одинарные) и комплексные.

    В простые удобрения входит только один из трех главных питательных элементов: азот, фосфор или калий. Соответственно, простые удобрения делят на азотные, фосфорные и калийные.

    Комплексные удобрения содержат два или три главных питательных элементов. По числу главных питательных элементов комплексные удобрения называются двойными (например, типа NP или PK) и тройными (NPK); последние называют также полными. Удобрения, содержащие значительные количества питательных элементов и мало балластных веществ, называются концентрированными.

    Комплексные удобрения, кроме того, разделяются на смешанные и сложные. Смешанными называются механические смеси удобрений, состоящие из разнородных частиц, получаемые простым тукосмешением. Если же удобрение, содержащее несколько питательных элементов, получается в результате химической реакции в заводской аппаратуре, оно называется сложным.

    Удобрения, предназначенные для питания растений элементами, стимулирующими рост растений и требующимися в весьма малых количествах, называются микроудобрениями, а содержащиеся в них питательные элементы – микроэлементами. Такие удобрения вносят в почву в количествах, измеряемых долями килограмма или килограммами на гектар. К ним относятся соли, содержащие бор, марганец, медь, цинк и другие элементы.

    По агрегатному состоянию удобрения разделяются на твердые и жидкие (например, аммиак, водные растворы и суспензии).

    2. Руководствуясь физико-химическими основами процессов получения простого и двойного суперфосфатов, обоснуйте выбор технологического режима. Приведите функциональные схемы производств.

    Сущность производства простого суперфосфата состоит в превращении природного фтор-апатита, нерастворимого в воде и почвенных растворах, в растворимые соединения, преимущественно в монокальцийфосфат Ca(H 2 PO 4) 2 . Процесс разложения может быть представлен следующим суммарным уравнением:

    Практически в процессе производства простого суперфосфата разложение протекает в две стадии. На первой стадии около 70% апатита реагирует с серной кислотой. При этом образуются фосфорная кислота и полугидрат сульфатакальция:

    Выкристаллизовавшиеся микрокристаллы сульфата кальция образуют структурную сетку, удерживающую большое количество жидкой фазы, и суперфосфатная масса затвердевает. Первая стадия процесса разложения начинается сразу после смешения реагентов и заканчивается в течение 20 – 40 мин в суперфосфатных камерах.

    После полного израсходования серной кислоты начинается вторая стадия разложения, в которой оставшийся апатит (30%) разлагается фосфорной кислотой:

    Основные процессы проходят на первых трех стадиях: смешение сырья, образование и затвердевания суперфосфатной пульпы, дозревания суперфосфата на складе.

    Простой гранулированный суперфосфат – дешевое фосфорное удобрение. Однако он имеет существенный недостаток – низкое содержание основного компонента (19 – 21% усвояемого) и высокую долю балласта – сульфата кальция. Его производят, как правило, в районах потребления удобрений, так как экономичнее доставлять концентрированное фосфатное сырье к суперфосфатным заводам, чем перевозить на дальние расстояния низкоконцентрированный простой суперфосфат.

    Получить концентрированное фосфорное удобрение можно, заменив серную кислоту при разложении фосфатного сырья на фосфорную. На этом принципе основано производство двойного суперфосфата.

    Двойного суперфосфата – концентрированное фосфорное удобрение, получаемое разложением природных фосфатов фосфорной кислотой. Он содержит 42 – 50% усвояемого, в том числе в водорастворимой форме 27 – 42% , т. е. в 2 – 3 раза больше, чем простой. По внешнему виду и фазовому составу двойной суперфосфат похож на простой суперфосфат. Однако он почти не содержит балласта – сульфата кальция.

    Двойной суперфосфат можно получать по технологической схеме, аналогичной схеме получения простого суперфосфата. Такой метод получения двойного суперфосфата носит название камерного. Его недостатками являются длительное складное дозревание продукта, сопровождающееся неорганиванными выделениями вредных фтористых соединений в атмосферу, и необходимость применения концентрированной фосфорной кислоты.

    Более прогрессивным является поточный метод производства двойного суперфосфата. В нем используют более дешевую неупаренную фосфорную кислоту. Метод является полностью непрерывным (отсуствует стадия длительного складского дозревания продукта).

    Простой и двойной суперфосфаты содержат в легко усваиваемой растениями форме. Однако в последние годы больше внимания стало уделяться выпуску удобрений с регулируемам сроком действия, в частности долговременно действующих. Для получения таких удобрений можно покрыть гранулы суперфосфата оболочкой, регулирующей высвобождение питательных веществ. Другой путь – смешение двойного суперфосфата с фосфоритной мукой. Это удобрение содержит 37 – 38% , в том числе около половины – в быстродйствующей водорастворимой форме и около половины – в медленнодействующей. Применение такого удобрения удлиняет срок его эффективного действия в почве.

    3. Почему технологический процесс получения простого суперфосфата включает стадию хранения (дозревания) на складе?

    Образующийся монокальцийфосфат в отличие от сульфата кальция не сразу выпадают в осадок. Он постепенно насыщает раствор фосфорной кислоты и начинает выкристаллизовываться в виде, когда раствор становится насыщенным. Реакция начинается в суперфосфатных камерах и длится еще в течение 5 – 20 сут хранения суперфосфата на складе. После дозревания на складе разложение фторапатита считают практически законченным, хотя в суперфосфате еще остается небольшое количество неразложившегося фосфата и свободной фосфорной кислоты.

    4. Приведите функциональную схему получения комплексных NPK – удобрений.

    5. Руководствуясь физико – химическими основами получения аммиачной селитры, обоснуйте выбор технологического режима и конструкции аппарата ИТН (использование теплоты нейтрализации.). Приведите функциональную схему производства аммиачной селитры.

    В основе процесса производства аммиачной селитры лежит гетерогенная реакция взаимодействия газообразного аммиака с раствором азотной кислоты:

    Химическая реакция протекает с большой скоростью; в промышленном реакторе она лимитируется растворением газа в жидкости. Для уменьшения диффузионного торможения процесса большое значение имеет перемешивание реагентов.

    Реакцию проводят в непрерывно действующем аппарате ИТН (использование теплоты нейтрализаuии). Реактор представляет собой вертикальный цилиндрический аппарат, состоящий из реакционной и сепарационной зон. В реакционной зоне имеется стакан 1,в нижней части которого находятся отверстия для циркуляции раствора. Несколько выше отверстий внутри стакана размещен барботер 2 для подачи газообразного аммиака,

    над ним барботер 3 для подачи азотной кислоты. Реакционная парожидкостная смесь выходит из верхней части реакционного стакана. Часть раствора выводится из аппарата ИТН и поступает в донейтрализатор, а остальная часть (циркуляционная) вновь идет

    вниз. Выделившийся из паражидкостной смеси соковый пар отмывается на колпачковых тарелках 6 от брызг раствора аммиачной селитры и паров азотной кислоты 20%-ным раствором селитры, а затем конденсатом сокового пара. Теплота реакции используется для частичного испарения воды из реакционной смеси (отсюда и название аппарата­

    ИТН). Разница в температурах в различных частях аппарата приводит к более интенсивной циркуляции реакционной смеси.

    Технологический процесс производства аммиачной селитры включает кроме стадии нейтрализации азотной кислоты аммиаком также стадии упаривания раствора селитры, гранулирования сплава селитры, охлаждения гранул, обработки гранул поверхностно-активными веществами, упаковки, хранения и погрузки селитры, очистки газовых выбросов и сточных вод.

    6. Какие меры принимают для снижения слёживаемости удобрений?

    Эффективным средством для уменьшения слеживания является обработка поверхности гранул поверхностно – активными веществами. В последние годы стали распространенными способы создания вокруг гранул различных оболочек, которые, с одной стороны, предохраняют удобрение от слеживания, с другой стороны, позволяют регулировать во времени процесс растворения питательных веществ в почвенных водах, т. е. создавать долговременно действующие удобрения.

    7. Из каких стадий состоит процесс получения карбамида? Приведите функциональную схему производства карбамида.

    Карбамид (мочевина) среди азотных удобрений занимает второе место по объему производства после аммиачной селитры. Рост производства карбамида обусловлен широкой сферой его применения в сельском хозяйстве. Он обладает большей устойчивостью к выщелачиванию по сравнению с другими азотными удобрениями, т. е. менее подвержен вымыванию из почвы, менее гигроскопичен, может применяться не только как удобрение, но и в качестве добавки к корму крупного рогатого скота. Карбамид, кроме того, широко используется для получения сложных удобрений, удобрений с регулируемым сроком действия, а также для получения пластмасс, клеев, лаков и покрытий.

    Карбамид - белое кристаллическое вещество, содержащее 46,6 мас. % азота. Его поучения основано на реакции взаимодействия аммиака с диоксидом углирода:

    Таким образом, сырьем для производства карбамида служит аммиак и диоксид углерода, получаемый в качестве побочного продукта при производстве технологического газа для синтеза аммиака. Поэтому производство карбамида на химических заводах обычно комбинируют с производством аммиака.

    Реакция – суммарная; она протекает в две стадии. На первой стадии протекает синтез карбамида:

    На второй стадии происходит эндотермический процесс отщепления воды от молекулы карбамида, в результате которого и происходит образование карбамида:

    Реакция образования карбамата аммония – обратимая экзотермическая реакция, протекает с уменьшением объема. Для смещения равновесия в сторону продукта ее необходимо проводить при повышенном давлении. Для того чтобы процесс протекает с достаточно высокой скоростью, необходимо повышенные температуры. Повышение давления компенсирует отрицательное влияние высоких температур на смещение равновесии реакции в обратную сторону. На практике синтез карбамида протекает при температурах 150 – 190 0 С и давлении 15 – 20 Мпа. В этих условиях реакция протекает с высокой скоростью и практически до конца.

    Разложение карбамада аммония – обратимая эндотермическая реакция, интенсивно протекающая в жидкой фазе. Для того чтобы в реакторе не происходило кристаллизации твердых продуктов, процесс необходимо вести при температурах не ниже 98 0 С. Более высокие температуры смещают равновесие реакции вправо и повышают ее скорость. Максимальная степень превращения карбамада в карбамид достикается при температуре 220 0 С. Для смещения равновесия этой реакции применяют также введение избытка аммиака, который, связывая реакционную воду, удаляет ее из сферы реакции. Однако добавить полного превращения карбамада в карбамид все же не удается. Реакционная смесь помимо продуктов реакции (карбамида и воды) содержит также карбонат аммония и продукты его разложения – аммиак и CO 2 .

    8. Каковы основные источники загрязнения ОС при производстве минеральных удобрений? Как уменьшить газовые выбросы и вредные выбросы со сточными водами в производстве фосфорных удобрений, аммиачной селитры, карбамида?

    При производстве фосфорных удобрений велика опасность загрязнения атмосферы фтористыми газами. Улавливание соединений фтора важно не только с точки зрения ООС, но также и потому, что фтор является ценным сырьем для получения фреонов, фторопластов, фторкаучуков и т. д. Для поглощения фтористых газов используют абсорбцию водой с образованием кремнефтористоводородной кислоты. Соединения фтора могут попасть и в сточные воды на стадиях промывки удобрений, газоочистки. Целесообразно для уменьшения количества таких сточных вод создавать в процессах замкнутые водооборотные циклы. Для очистки сточных вод от фтористых соединений могут быть применены методы ионного обмена, осаждения с гидроксидами железа и алюминия, сорбция на оксиде алюминия и др.

    Сточные воды производства азотных удобрений, содержащие аммиачную селитру и карбамид, направляют на биологическую очистку, предварительно смешивая их с другими сточными водами в таких соотношениях, чтобы концентрация карбамида не превышала 700 мг/л, а аммиака -65 – 70 мг/л.

    Важной задачей в производстве минеральных удобрений является очистка отходящих газов от пыли. Особенно велика возможность загрязнения атмосферы пылью удобрений на стадии грануляции. Поэтому газ, выходящий из грануляционных башен, обязательно подвергается пылеочистке сухими и мокрыми методами.

    Промышленность минеральных удобрений - одна из базовых отраслей химического комплекса России. Производственный потенциал отрасли составляют свыше тридцати специализированных предприятий, выпускающих более 13 млн т азотных, калийных и фосфорных удобрений в год. На долю Российской Федерации приходится до 6-7% общемирового выпуска удобрений. Отрасль вырабатывает более 20% продукции химического комплекса в стоимостном выражении, а ее доля в структуре экспорта химических отраслей превышает треть. На фоне других отраслей химического комплекса промышленность минеральных удобрений выглядит самой благополучной. Это объясняется рядом обстоятельств. Во-первых, к моменту начала радикальных экономических преобразований в стране многие предприятия, производящие удобрения, были оснащены относительно прогрессивной технологией и оборудованием, что позволило им выпускать конкурентоспособную на международном рынке продукцию. Во-вторых, имеющееся у нас сырье для производства минеральных удобрений, прежде всего это относится к природному газу и калийсодержащим рудам, очень контрастно распределено в мире: огромные регионы ими попросту обделены. Наиболее востребованы за рубежом калийные удобрения, что обеспечивает им весомую долю (60-70%) в экспортных объемах поставок удобрений. Основные рынки сбыта для российских удобрений - Латинская Америка и Китай. В то же время внутренний спрос на минеральные удобрения в нашей стране резко упал: с 1990 по 2002 г. внесение минеральных удобрений всех типов в пересчете на 1 га посевов сократилось в 40 раз, но, справедливости ради, нужно отметить, что в последние годы наблюдается тенденция некоторого роста (подробнее см. География
    № 3/2005, с. 43-44).

    Размещение предприятий отрасли зависит в первую очередь от сырьевого и потребительского факторов. Наряду с ними определенную роль играют особенности распространения ресурсов азота, фосфора и калия в почвах. Запасы азота в почве увеличиваются в направлении с севера на юг до лесостепной зоны, где достигают максимума, а затем постепенно уменьшаются. Подобным же образом происходит изменение почвенных запасов фосфора, с той лишь разницей, что их максимум приходится на степную зону. Запасы калия в почве максимальны в лесной зоне и к югу от нее уменьшаются. На одной и той же широте ресурсов азота больше на территории восточных районов, чем в Европейской части, а фосфора и калия меньше. Для всех производств минеральных удобрений характерна высокая тепло- и энергоемкость (доля энергоносителей в себестоимости продукции составляет от 25 до 50%).

    Исходное сырье для производства азотных удобрений (аммиачная селитра, карбомид, сернокислый аммоний и др.) - аммиак. Ранее аммиак получали из кокса и коксового газа, поэтому прежде центры его получения совпадали с металлургическими районами. И поныне некоторые заводы, производящие азотные удобрения (как правило, небольшие), размещены в пределах важнейших металлургических баз страны: это, прежде всего, Кемерово, Череповец, Заринск, Новотроицк, Челябинск, Магнитогорск, Липецк. Во многих этих городах даже не существует специализированных предприятий по выпуску минеральных удобрений, и азотные удобрения выпускают сами металлургические комбинаты в качестве попутной продукции.

    В последнее время на смену коксу и коксовому газу в качестве основного сырья для производства аммиака пришел природный газ, что позволило гораздо свободнее размещать заводы азотных удобрений. Теперь они ориентированы больше на магистральные газопроводы, например, крупнейшие из заводов - в Великом Новгороде, Новомосковске, Кирово-Чепецке, Верхнеднепровском (под Дорогобужем), Россоши, Невинномысске, Тольятти. Некоторые центры азотной подотрасли возникли на основе использования отходов нефтепереработки (Салават, Ангарск).

    Суммарные действующие мощности по производству аммиака в России составляют около 9% от мировых (третий показатель в мире после Китая и США). Однако потенциал предприятий используется не полностью, и по объему производства аммиака Россия занимает четвертое место в мире после Китая, США и Индии, производя примерно 6% этого вида продукции. От того, насколько эффективно работают агрегаты по производству аммиака, зависит себестоимость выпускаемых азотных удобрений. Чем меньше расходуется природного газа на тонну аммиака, тем ниже издержки и тем выше конкурентоспособность.

    Производство фосфорных удобрений в меньшей степени ориентировано на источники сырья, чем азотная подотрасль. Простой суперфосфат (наиболее распространенное фосфорное удобрение) содержит растворимого фосфора всего лишь примерно в 2 раза меньше по сравнению с исходным сырьем. В то же время часть предприятий расположена в непосредственной близости от месторождений фосфорного сырья - фосфоритов (Воскресенск, Кингисепп). Производством фосфорных удобрений заняты также некоторые центры цветной металлургии (в России - Красноуральск), где сырьем служат отходящие при металлургическом процессе газы, насыщенные серой.

    Основные добытчики фосфорного сырья в России - ОАО «Апатит» и Ковдорский ГОК. Оба расположены в Мурманской обл., за полярным кругом, что существенно повышает расходы на транспортировку до центров производства удобрений, особенно до Балакова, Мелеуза и Белореченска. И если относительно высокие цены на внешнем рынке позволяют предприятиям вести экспортную деятельность хотя бы с минимальной прибылью, то для внутренних потребителей фосфорные удобрения становятся всё менее доступными из-за высоких цен на рудное сырье, которое составляет сегодня до 40-60% себестоимости различных групп удобрений.

    Лидерами в производстве фосфорных удобрений остаются ОАО «Аммофос» (Череповец), ОАО «Воскресенские минеральные удобрения» и ОАО «Акрон» (Великий Новгород). Уровень использования мощностей в производстве фосфорных удобрений еще ниже, чем в производстве азотных. В среднем по России он едва превышает 50%, только предприятия в Воскресенске и Великом Новгороде работают на 80% мощностей.

    Производство калийных удобрений прочно привязано к единственному в России источнику сырья - Верхнекамскому месторождению калийных солей, где действуют два основных предприятия: ОАО «Уралкалий» (Березники) и ОАО «Сильвинит» (Соликамск). Основной вид калийных удобрений - хлорид калия. Основная часть затрат производящих предприятий приходится на добычу калийной руды, поэтому по причине очень большой материалоемкости калийное сырье перерабатывается на месте. В отличие от азотных и фосфорных, производство калийных удобрений в последние годы устойчиво нарастает, чему способствует благоприятная ситуация на внешнем рынке.

    Значительное место в производстве удобрений занимают сложные минеральные удобрения (такие, как аммофос, диаммофос, азофоска и т.п.), содержащие два или три питательных вещества. Промышленность минеральных удобрений ориентирована на выпуск продукции в гранулированном виде, удобном для транспортировки и потребления (базовые удобрения часто смешиваются в разных пропорциях перед их внесением в почву).

    Ежегодный прирост населения мира составляет около 70 млн человек. Их нужно обеспечить растительной пищей в условиях устойчиво сокращающихся посевных площадей. Единственный путь решения этой задачи - интенсификация мирового земледелия, которую невозможно проводить без дальнейшего увеличения объемов производства минеральных удобрений. В связи с этим перспективы развития отечественной промышленности минеральных удобрений, во многом ориентированной на экспорт, вполне оптимистичны.

    Крупнейшие холдинги в промышленности
    минеральных удобрений

    Холдинг Специализация Предприятия в составе холдинга
    Агрохимпромхолдинг ОАО «Азот» (Новомосковск),
    ОАО «Минудобрения» (Пермь),
    ОАО «Азот» (Березники),
    АО «Kирово-Чепецкий химкомбинат»,
    ОАО «Череповецкий азот»
    Ассоциация «Фосагро» ОАО «Апатит» (Kировск),
    ОАО «Аммофос» (Череповец),
    ОАО «Воскресенские
    минеральные удобрения»,
    АО «Балаковские минеральные
    удобрения»,
    АО «Минудобрения» (Мелеуз)
    Интерагроинвест Производство калийных удобрений ОАО «Сильвинит» (Соликамск),
    ОАО «Уралкалий» (Березники),
    ПО «Беларуськалий»
    (Солигорск, Белоруссия)
    Химическая компания «Акрон» Производство азотных удобрений ОАО «Акрон»
    (Великий Новгород),
    ОАО «Дорогобуж»
    (Верхнеднепровский)
    «Еврохим» Производство фосфорных удобрений ОАО «Фосфорит»
    (Kингисепп),
    Kовдорский ГОK

    По данным РосБизнесКонсалтинг

    Производство минеральных удобрений в регионах РФ
    (в пересчете на 100% питательных веществ, тысяч тонн)

    Регион 1990 1995 1998 2000 2001 2002 Место,
    занимаемое в
    Российской Федерации,
    2002
    Российская Федерация 15 979 9 639 9 380 12 213 13 026 13 562
    Центральный федеральный округ 3 363,8 1 487,0 1 391,5 1 968,5 2 138,6 2 227,7 3
    Белгородская обл. 2,3 2,1
    Брянская обл. 86,4 13,8 1,1 7,8 3,2 2,8 25
    Воронежская обл. 334,3 190,7 291,9 518,9 577,5 591,5 6
    Kостромская обл. 5,3 9,5 11,5 0,4 26
    Липецкая обл. 77,1 34,7 33,6 19,8 20,6 20,4 18
    Московская обл. 1 185,2 374,1 390,3 452,0 487,8 459,2 12
    Рязанская обл. 19,6 0,4 0,1
    Смоленская обл. 483,2 368,4 243,4 369,9 388,4 475,3 11
    Тамбовская обл. 208,4 21,2 1,2 23,3 16,8 0,1 27
    Тульская обл. 969,6 483,7 422,3 565,2 632,8 678,0 5
    Северо-Западный федеральный округ 2 653,2 1 862,8 2 166,1 2 419,5 2 664,3 2 895,6 2
    Вологодская обл. 1 179,1 940,8 1 251,4 1 445,8 1 499,3 1 639,9 2
    Kалининградская обл. 36,4
    Ленинградская обл. 776,6 258,0 207,2 204,3 174,9 288,0 13
    Новгородская обл. 697,5 664,0 707,5 733,0 990,1 967,7 3
    Южный
    федеральный
    округ
    1 333,5 621,1 607,7 957,1 926,0 884,0 4
    Республика Дагестан 52,6
    Kраснодарский край 310,2 30,1 57,6 96,7 33,4 105,3 15
    Ставропольский край 970,7 591,0 550,1 860,4 892,6 778,7 4
    Приволжский федеральный округ 7 394,5 4 901,5 4 953,1 6 344,9 6 740,8 6 918,1 1
    Республика Башкортостан 574,7 287,9 59,5 353,7 312,4 223,5 14
    Республика Татарстан 59,7 14,4 8,4 47,8 37,9 37,0 16
    Kировская обл. 767,6 434,7 471,1 585,7 552,8 580,8 7
    Нижегородская обл. 176,2 28,2 5,9 10,6 13,1 11,4 22
    Оренбургская обл. 6,9 5,7 5,0 6,0 6,0 6,0 24
    Пермская обл. 4 269,2 3 254,0 3 940,5 4 359,6 4 888,5 5 093,4 1
    Самарская обл. 1 053,3 581,9 457,0 566,6 459,7 490,6 9
    Саратовская обл. 486,9 294,7 5,7 414,9 470,4 475,4 10
    Уральский федеральный округ 398,1 42,7 42,4 25,3 26,0 30,9 6
    Свердловская обл. 359,8 19,7 7,9 12,6 13,2 16,0 19
    Челябинская обл. 38,3 23,0 34,5 12,7 12,8 14,9 21
    Сибирский федеральный округ 835,7 724,3 219,0 498,0 530,2 606,1 5
    Алтайский край 16,4 15,4 9,0 15,0 13,9 15,4 20
    Kрасноярский край 22,9 10,0 16,9 22,1 15,8 21,6 17
    Иркутская обл. 259,0 288,8 8,1 10,6 9,1 6,1 23
    Kемеровская обл. 537,4 410,1 185,0 450,3 491,4 563,0 8

    По данным Госкомстата РФ