सीढ़ियां।  प्रवेश समूह।  सामग्री।  दरवाजे।  ताले।  डिज़ाइन

सीढ़ियां। प्रवेश समूह। सामग्री। दरवाजे। ताले। डिज़ाइन

» अनुचित अंशों को कैसे गुणा करें। अंश। साधारण, दशमलव, मिश्रित भिन्नों का गुणन

अनुचित अंशों को कैसे गुणा करें। अंश। साधारण, दशमलव, मिश्रित भिन्नों का गुणन

पिछली बार हमने भिन्नों को जोड़ना और घटाना सीखा था (पाठ "अंशों का जोड़ और घटाव" देखें)। उन कार्यों में सबसे कठिन क्षण एक सामान्य भाजक के लिए भिन्न लाना था।

अब गुणा और भाग से निपटने का समय आ गया है। खुशखबरीयह है कि ये ऑपरेशन जोड़ और घटाव से भी सरल हैं। शुरू करने के लिए, सबसे सरल मामले पर विचार करें, जब एक विशिष्ट पूर्णांक भाग के बिना दो सकारात्मक अंश हों।

दो भिन्नों को गुणा करने के लिए, आपको उनके अंश और हर को अलग-अलग गुणा करना होगा। पहली संख्या नई भिन्न का अंश होगी, और दूसरी हर होगी।

दो भिन्नों को विभाजित करने के लिए, आपको पहले अंश को "उल्टे" दूसरे से गुणा करना होगा।

पद:

परिभाषा से यह इस प्रकार है कि अंशों का विभाजन गुणा में घटाया जाता है। भिन्न को पलटने के लिए, बस अंश और हर को बदलें। इसलिए, पूरे पाठ में हम मुख्य रूप से गुणन पर विचार करेंगे।

गुणा के परिणामस्वरूप, एक छोटा अंश उत्पन्न हो सकता है (और अक्सर उत्पन्न होता है) - बेशक, इसे कम किया जाना चाहिए। यदि, सभी कटौती के बाद, अंश गलत निकला, तो पूरे भाग को इसमें अलग किया जाना चाहिए। लेकिन गुणन के साथ वास्तव में जो नहीं होगा वह एक सामान्य भाजक में कमी है: कोई क्रॉसवर्ड तरीके, अधिकतम कारक और कम से कम सामान्य गुणक नहीं।

परिभाषा के अनुसार हमारे पास है:

पूर्णांक भाग और ऋणात्मक भिन्नों के साथ भिन्नों का गुणन

यदि भिन्नों में एक पूर्णांक भाग है, तो उन्हें अनुचित में परिवर्तित किया जाना चाहिए - और उसके बाद ही ऊपर उल्लिखित योजनाओं के अनुसार गुणा किया जाना चाहिए।

यदि किसी भिन्न के अंश में, हर में या उसके सामने ऋण हो, तो उसे निम्नलिखित नियमों के अनुसार गुणा की सीमा से बाहर निकाला जा सकता है या पूरी तरह से हटाया जा सकता है:

  1. प्लस टाइम्स माइनस माइनस देता है;
  2. दो नकारात्मक सकारात्मक बनाते हैं।

अब तक, इन नियमों का सामना केवल नकारात्मक अंशों को जोड़ते और घटाते समय किया जाता था, जब पूरे भाग से छुटकारा पाने की आवश्यकता होती थी। एक उत्पाद के लिए, उन्हें एक साथ कई माइनस को "बर्न" करने के लिए सामान्यीकृत किया जा सकता है:

  1. जब तक वे पूरी तरह से गायब नहीं हो जाते, तब तक हम जोड़े में माइनस को पार करते हैं। एक चरम मामले में, एक माइनस बच सकता है - वह जिसे मैच नहीं मिला;
  2. यदि कोई माइनस नहीं बचा है, तो ऑपरेशन पूरा हो गया है - आप गुणा करना शुरू कर सकते हैं। यदि अंतिम ऋण को पार नहीं किया जाता है, क्योंकि उसे एक जोड़ा नहीं मिला है, तो हम इसे गुणा की सीमा से बाहर कर देते हैं। आपको एक नकारात्मक अंश मिलता है।

काम। व्यंजक का मान ज्ञात कीजिए:

हम सभी भिन्नों का अनुचित अंशों में अनुवाद करते हैं, और फिर हम गुणन की सीमा से बाहर के माइनस निकालते हैं। जो बचा है उसे गुणा किया जाता है सामान्य नियम. हम पाते हैं:

मैं आपको एक बार फिर याद दिला दूं कि एक हाइलाइट किए गए पूर्णांक भाग के साथ एक अंश से पहले आने वाला ऋण विशेष रूप से संपूर्ण अंश को संदर्भित करता है, न कि केवल इसके पूर्णांक भाग के लिए (यह पिछले दो उदाहरणों पर लागू होता है)।

नकारात्मक संख्याओं पर भी ध्यान दें: जब गुणा किया जाता है, तो वे कोष्ठक में संलग्न होते हैं। यह गुणन चिह्नों से कमियों को अलग करने और संपूर्ण अंकन को अधिक सटीक बनाने के लिए किया जाता है।

मक्खी पर अंशों को कम करना

गुणन एक बहुत ही श्रमसाध्य ऑपरेशन है। यहां संख्याएं काफी बड़ी हैं, और कार्य को सरल बनाने के लिए, आप अंश को और भी कम करने का प्रयास कर सकते हैं गुणन से पहले. दरअसल, संक्षेप में, अंशों के अंश और हर सामान्य कारक हैं, और इसलिए, उन्हें अंश की मूल संपत्ति का उपयोग करके कम किया जा सकता है। उदाहरणों पर एक नज़र डालें:

काम। व्यंजक का मान ज्ञात कीजिए:

परिभाषा के अनुसार हमारे पास है:

सभी उदाहरणों में, जो संख्याएँ कम की गई हैं और जो उनमें से बची हैं उन्हें लाल रंग से चिह्नित किया गया है।

कृपया ध्यान दें: पहले मामले में, गुणक पूरी तरह से कम हो गए थे। इकाइयाँ अपने स्थान पर रहीं, जिन्हें सामान्यतया छोड़ा जा सकता है। दूसरे उदाहरण में, पूर्ण कमी प्राप्त करना संभव नहीं था, लेकिन गणना की कुल मात्रा में अभी भी कमी आई है।

हालाँकि, किसी भी स्थिति में भिन्नों को जोड़ते और घटाते समय इस तकनीक का उपयोग न करें! हां, कभी-कभी ऐसी ही संख्याएं होती हैं जिन्हें आप कम करना चाहते हैं। यहाँ, देखो:

आप ऐसा नहीं कर सकते!

त्रुटि इस तथ्य के कारण होती है कि एक अंश जोड़ते समय, योग भिन्न के अंश में दिखाई देता है, न कि संख्याओं के गुणनफल में। इसलिए, एक अंश की मुख्य संपत्ति को लागू करना असंभव है, क्योंकि इस संपत्ति में हम बात कर रहे हेयह संख्याओं को गुणा करने के बारे में है।

भिन्नों को कम करने का कोई अन्य कारण नहीं है, इसलिए सही समाधानपिछला कार्य इस तरह दिखता है:

सही समाधान:

जैसा कि आप देख सकते हैं, सही उत्तर इतना सुंदर नहीं निकला। सामान्य तौर पर, सावधान रहें।

एक अन्य ऑपरेशन जो साधारण भिन्नों के साथ किया जा सकता है, वह है गुणन। हम समस्याओं को हल करते समय इसके बुनियादी नियमों को समझाने की कोशिश करेंगे, यह दिखाएंगे कि कैसे एक साधारण अंश को एक प्राकृतिक संख्या से गुणा किया जाता है और तीन या अधिक साधारण अंशों को सही तरीके से कैसे गुणा किया जाता है।

आइए पहले मूल नियम लिखें:

परिभाषा 1

यदि हम एक उभयनिष्ठ भिन्न को गुणा करें, तो परिणामी भिन्न का अंश होगा उत्पाद के बराबर हैमूल भिन्नों के अंश, और हर - उनके हर का गुणनफल। शाब्दिक रूप में, दो भिन्नों a / b और c / d के लिए, इसे a b · c d = a · c b · d के रूप में व्यक्त किया जा सकता है।

आइए एक उदाहरण देखें कि इस नियम को सही तरीके से कैसे लागू किया जाए। मान लीजिए कि हमारे पास एक वर्ग है जिसकी भुजा एक संख्यात्मक इकाई के बराबर है। तब आकृति का क्षेत्रफल 1 वर्ग होगा। इकाई। यदि हम वर्ग को संख्यात्मक इकाई के 1 4 और 1 8 के बराबर भुजाओं वाले समान आयतों में विभाजित करते हैं, तो हम पाते हैं कि इसमें अब 32 आयतें हैं (क्योंकि 8 4 = 32)। तदनुसार, उनमें से प्रत्येक का क्षेत्रफल संपूर्ण आकृति के क्षेत्रफल के 1 32 के बराबर होगा, अर्थात। 1 32 वर्ग। इकाइयां

हमारे पास 5 8 संख्यात्मक इकाइयों और 3 4 संख्यात्मक इकाइयों के बराबर पक्षों वाला एक छायांकित टुकड़ा है। तदनुसार, इसके क्षेत्रफल की गणना करने के लिए, पहले अंश को दूसरे से गुणा करना आवश्यक है। यह 5 8 3 4 वर्ग मीटर के बराबर होगा। इकाइयां लेकिन हम केवल यह गिन सकते हैं कि टुकड़े में कितने आयत शामिल हैं: उनमें से 15 हैं, इसलिए कुल क्षेत्रफल 1532 वर्ग इकाई है।

चूँकि 5 3 = 15 और 8 4 = 32 हम निम्नलिखित समीकरण लिख सकते हैं:

5 8 3 4 = 5 3 8 4 = 15 32

यह उस नियम की पुष्टि है जिसे हमने साधारण भिन्नों को गुणा करने के लिए तैयार किया है, जिसे a b · c d = a · c b · d के रूप में व्यक्त किया जाता है। यह उचित और अनुचित दोनों भिन्नों के लिए समान कार्य करता है; इसका उपयोग भिन्न और समान हर से भिन्नों को गुणा करने के लिए किया जा सकता है।

आइए साधारण भिन्नों के गुणन के लिए कई समस्याओं के समाधान का विश्लेषण करें।

उदाहरण 1

7 11 को 9 8 से गुणा करें।

फेसला

आरंभ करने के लिए, हम संकेतित भिन्नों के अंशों के गुणनफल की गणना 7 को 9 से गुणा करके करते हैं। हमें 63 मिले। फिर हम हरों के गुणनफल की गणना करते हैं और प्राप्त करते हैं: 11 8 = 88। आइए दो संख्याओं से उत्तर लिखें: 63 88।

पूरा समाधान इस तरह लिखा जा सकता है:

7 11 9 8 = 7 9 11 8 = 63 88

जवाब: 7 11 9 8 = 63 88।

अगर उत्तर में हमें एक कम करने योग्य अंश मिलता है, तो हमें गणना पूरी करने और इसकी कमी करने की आवश्यकता होती है। अगर हम सफल नहीं हुए उचित अंश, इसमें से पूरे भाग का चयन करना आवश्यक है।

उदाहरण 2

भिन्नों के गुणनफल की गणना करें 4 15 और 55 6 .

फेसला

ऊपर अध्ययन किए गए नियम के अनुसार, हमें अंश को अंश से और हर को हर से गुणा करना होता है। समाधान प्रविष्टि इस तरह दिखेगी:

4 15 55 6 = 4 55 15 6 = 220 90

हमने एक घटा हुआ अंश प्राप्त किया है, अर्थात। वह जिसमें 10 से विभाज्यता का चिन्ह हो।

आइए अंश को कम करें: 220 90 जीसीडी (220, 90) \u003d 10, 220 90 \u003d 220: 10 90: 10 \u003d 22 9। नतीजतन, हमें एक अनुचित अंश मिला, जिसमें से हम पूरे भाग का चयन करते हैं और एक मिश्रित संख्या प्राप्त करते हैं: 22 9 \u003d 2 4 9।

जवाब: 4 15 55 6 = 2 4 9 .

गणना की सुविधा के लिए, हम गुणन संक्रिया करने से पहले मूल भिन्नों को भी कम कर सकते हैं, जिसके लिए हमें अंश को a · c b · d के रूप में कम करने की आवश्यकता होती है। हम चर के मूल्यों को सरल कारकों में विघटित करते हैं और उन्हें रद्द कर देते हैं।

आइए हम बताते हैं कि किसी विशिष्ट समस्या के डेटा का उपयोग करना कैसा दिखता है।

उदाहरण 3

गुणनफल 4 15 55 6 परिकलित कीजिए।

फेसला

आइए गुणन नियम के आधार पर गणनाएँ लिखें। हम यह कर सकेंगे:

4 15 55 6 = 4 55 15 6

चूँकि 4 = 2 2, 55 = 5 11, 15 = 3 5 और 6 = 2 3, तो 4 55 15 6 = 2 2 5 11 3 5 2 3।

2 11 3 3 = 22 9 = 2 4 9

जवाब: 4 15 55 6 = 2 4 9।

संख्यात्मक अभिव्यक्ति, जिसमें साधारण भिन्नों का गुणन होता है, एक क्रमविनिमेय गुण होता है, अर्थात्, यदि आवश्यक हो, तो हम कारकों के क्रम को बदल सकते हैं:

ए बी सी डी = सी डी ए बी = ए सी बी डी

किसी भिन्न को प्राकृत संख्या से गुणा कैसे करें

आइए मूल नियम को तुरंत लिख लें, और फिर इसे व्यवहार में समझाने का प्रयास करें।

परिभाषा 2

एक साधारण भिन्न को एक प्राकृत संख्या से गुणा करने के लिए, आपको इस भिन्न के अंश को इस संख्या से गुणा करना होगा। इस मामले में, अंतिम भिन्न का हर मूल साधारण भिन्न के हर के बराबर होगा। किसी भिन्न a b को एक प्राकृत संख्या n से गुणा करने पर एक सूत्र a b · n = a · n b के रूप में लिखा जा सकता है।

इस सूत्र को समझना आसान है यदि आपको याद है कि किसी भी प्राकृत संख्या को एक के बराबर भाजक के साथ एक साधारण भिन्न के रूप में दर्शाया जा सकता है, अर्थात:

ए बी एन = ए बी एन 1 = ए एन बी 1 = ए एन बी

आइए हम अपने विचार को ठोस उदाहरणों के साथ समझाएं।

उदाहरण 4

2 27 बटा 5 के गुणनफल की गणना करें।

फेसला

मूल भिन्न के अंश को दूसरे गुणनखंड से गुणा करने पर हमें 10 प्राप्त होता है। उपरोक्त नियम के आधार पर, हमें परिणाम के रूप में 10 27 मिलेंगे। इस पोस्ट में पूरा समाधान दिया गया है:

2 27 5 = 2 5 27 = 10 27

जवाब: 2 27 5 = 10 27

जब हम एक प्राकृत संख्या को एक सामान्य भिन्न से गुणा करते हैं, तो हमें अक्सर परिणाम को कम करना पड़ता है या इसे मिश्रित संख्या के रूप में प्रस्तुत करना पड़ता है।

उदाहरण 5

शर्त: 8 गुना 5 12 के गुणनफल की गणना करें।

फेसला

ऊपर दिए गए नियम के अनुसार, हम एक प्राकृत संख्या को अंश से गुणा करते हैं। परिणामस्वरूप, हम पाते हैं कि 5 12 8 = 5 8 12 = 40 12। अंतिम अंश में 2 से विभाज्यता के संकेत हैं, इसलिए हमें इसे कम करने की आवश्यकता है:

एलसीएम (40, 12) \u003d 4, सो 40 12 \u003d 40: 4 12: 4 \u003d 10 3

अब हमें केवल पूर्णांक भाग का चयन करना है और समाप्त उत्तर लिखना है: 10 3 = 3 1 3।

इस प्रविष्टि में, आप संपूर्ण समाधान देख सकते हैं: 5 12 8 = 5 8 12 = 40 12 = 10 3 = 3 1 3।

हम अंश और हर को अभाज्य गुणनखंडों में विभाजित करके भी भिन्न को कम कर सकते हैं, और परिणाम बिल्कुल वैसा ही होगा।

जवाब: 5 12 8 = 3 1 3।

एक संख्यात्मक अभिव्यक्ति जिसमें एक प्राकृतिक संख्या को एक अंश से गुणा किया जाता है, में भी विस्थापन गुण होता है, अर्थात, कारकों का क्रम परिणाम को प्रभावित नहीं करता है:

ए बी एन = एन ए बी = ए एन बी

तीन या अधिक सामान्य भिन्नों को कैसे गुणा करें

हम साधारण अंशों के गुणन को उन्हीं गुणों तक बढ़ा सकते हैं जो प्राकृतिक संख्याओं के गुणन की विशेषता हैं। यह इन अवधारणाओं की बहुत परिभाषा से आता है।

साहचर्य और कम्यूटेटिव गुणों के ज्ञान के लिए धन्यवाद, तीन या अधिक साधारण अंशों को गुणा करना संभव है। अधिक सुविधा के लिए कारकों को स्थानों में पुनर्व्यवस्थित करना या कोष्ठक को इस तरह से व्यवस्थित करना अनुमत है जिससे गिनना आसान हो जाए।

आइए एक उदाहरण दिखाते हैं कि यह कैसे किया जाता है।

उदाहरण 6

चार उभयनिष्ठ भिन्नों 1 20 , 12 5 , 3 7 और 5 8 का गुणा कीजिए।

समाधान: सबसे पहले, काम को रिकॉर्ड करते हैं। हमें 1 20 12 5 3 7 5 8 मिलता है। हमें सभी अंशों और सभी हरों को एक साथ गुणा करना होगा: 1 20 12 5 3 7 5 8 = 1 12 3 5 20 5 7 8।

इससे पहले कि हम गुणा करना शुरू करें, हम इसे अपने लिए थोड़ा आसान बना सकते हैं और कुछ संख्याओं को आगे घटाने के लिए अभाज्य गुणनखंडों में विघटित कर सकते हैं। इसके परिणामस्वरूप तैयार अंश को कम करने की तुलना में यह आसान होगा।

1 12 3 5 20 5 7 8 = 1 (2 2 3) 3 5 2 2 5 5 7 (2 2 2) = 3 3 5 7 2 2 2 = 9 280

जवाब: 1 12 3 5 20 5 7 8 = 9280.

उदाहरण 7

5 संख्या 7 8 12 8 5 36 10 गुणा करें।

फेसला

सुविधा के लिए, हम संख्या 8 के साथ भिन्न 7 8 और संख्या 12 को भिन्न 5 36 के साथ समूहित कर सकते हैं, क्योंकि इससे हमें भविष्य में कटौती स्पष्ट हो जाएगी। परिणामस्वरूप, हम प्राप्त करेंगे:
7 8 12 8 5 36 10 = 7 8 8 12 5 36 10 = 7 8 8 12 5 36 10 = 7 1 2 2 3 5 2 2 3 3 10 = = 7 5 3 10 = 7 5 10 3 = 350 3 = 116 2 3

जवाब: 7 8 12 8 5 36 10 = 116 2 3 .

यदि आप टेक्स्ट में कोई गलती देखते हैं, तो कृपया उसे हाइलाइट करें और Ctrl+Enter दबाएं

अंशों का गुणन और विभाजन।

ध्यान!
अतिरिक्त हैं
में सामग्री विशेष धारा 555.
उन लोगों के लिए जो दृढ़ता से "बहुत नहीं ..."
और उन लोगों के लिए जो "बहुत ज्यादा...")

यह ऑपरेशन बहुत अच्छा है जोड़-घटाव! क्योंकि यह आसान है। मैं आपको याद दिलाता हूं: एक अंश को एक अंश से गुणा करने के लिए, आपको अंशों को गुणा करना होगा (यह परिणाम का अंश होगा) और हर (यह हर होगा)। अर्थात:

उदाहरण के लिए:

सब कुछ बेहद सरल है. और कृपया एक सामान्य हर की तलाश न करें! यहां इसकी जरूरत नहीं है...

किसी भिन्न को भिन्न से भाग देने के लिए, आपको पलटना होगा दूसरा(यह महत्वपूर्ण है!) भिन्न और उन्हें गुणा करें, अर्थात:

उदाहरण के लिए:

यदि पूर्णांकों और भिन्नों के साथ गुणा या भाग पकड़ा जाता है, तो कोई बात नहीं। इसके अलावा, हम हर में एक इकाई के साथ एक पूर्ण संख्या से एक अंश बनाते हैं - और जाओ! उदाहरण के लिए:

हाई स्कूल में, आपको अक्सर तीन-कहानी (या चार-कहानी!) भिन्नों से निपटना पड़ता है। उदाहरण के लिए:

इस भिन्न को सभ्य रूप में कैसे लाया जाए? हाँ, बहुत आसान! दो बिंदुओं के माध्यम से विभाजन का प्रयोग करें:

लेकिन विभाजन के आदेश के बारे में मत भूलना! गुणन के विपरीत, यह यहाँ बहुत महत्वपूर्ण है! बेशक, हम 4:2 या 2:4 को भ्रमित नहीं करेंगे। लेकिन तीन मंजिला अंश में गलती करना आसान है। कृपया ध्यान दें, उदाहरण के लिए:

पहले मामले में (बाईं ओर अभिव्यक्ति):

दूसरे में (दाईं ओर अभिव्यक्ति):

अंतर महसूस करें? 4 और 1/9!

विभाजन का क्रम क्या है? या कोष्ठक, या (यहाँ के रूप में) क्षैतिज डैश की लंबाई। एक आँख विकसित करें। और अगर कोई कोष्ठक या डैश नहीं हैं, जैसे:

फिर विभाजित-गुणा क्रम में, बाएं से दाएं!

और बहुत ही सरल और महत्वपूर्ण ट्रिक. डिग्री के साथ कार्यों में, यह आपके काम आएगा! आइए इकाई को किसी भिन्न से विभाजित करें, उदाहरण के लिए, 13/15 से:

शॉट पलट गया! और यह हमेशा होता है। 1 को किसी भिन्न से भाग देने पर परिणाम वही भिन्न होता है, केवल उल्टा।

भिन्नों के साथ यही सभी क्रियाएं हैं। बात काफी सरल है, लेकिन पर्याप्त से अधिक त्रुटियाँ देता है। टिप्पणी प्रायोगिक उपकरण, और वे (त्रुटियाँ) कम होंगी!

व्यावहारिक सुझाव:

1. भिन्नात्मक अभिव्यक्तियों के साथ काम करते समय सबसे महत्वपूर्ण बात सटीकता और सावधानी है! ये सामान्य शब्द नहीं हैं, शुभकामनाएँ नहीं! यह एक गंभीर आवश्यकता है! परीक्षा में सभी गणनाओं को एक पूर्ण कार्य के रूप में एकाग्रता और स्पष्टता के साथ करें। अपने दिमाग में गणना करते समय गड़बड़ करने की तुलना में मसौदे में दो अतिरिक्त पंक्तियाँ लिखना बेहतर है।

2. उदाहरणों में अलग - अलग प्रकारभिन्न - साधारण भिन्न पर जाएँ।

3. हम सभी भिन्नों को स्टॉप तक कम करते हैं।

4. हम दो बिंदुओं के माध्यम से विभाजन का उपयोग करके बहु-स्तरीय भिन्नात्मक अभिव्यक्तियों को साधारण लोगों तक कम करते हैं (हम विभाजन के क्रम का पालन करते हैं!)।

5. हम केवल भिन्न को पलट कर इकाई को अपने दिमाग में भिन्न में विभाजित करते हैं।

यहां वे कार्य हैं जिन्हें आपको पूरा करने की आवश्यकता है। सभी कार्यों के बाद उत्तर दिए जाते हैं। इस विषय की सामग्री और व्यावहारिक सलाह का प्रयोग करें। अनुमान लगाएं कि आप कितने उदाहरणों को सही ढंग से हल कर सकते हैं। पहली बार! कैलकुलेटर के बिना! और सही निष्कर्ष निकालें ...

सही उत्तर याद रखें दूसरे (विशेषकर तीसरे) समय से प्राप्त - गिनती नहीं है!ऐसा कठोर जीवन है।

इसलिए, परीक्षा मोड में हल करें ! वैसे यह परीक्षा की तैयारी है। हम एक उदाहरण हल करते हैं, हम जांचते हैं, हम निम्नलिखित को हल करते हैं। हमने सब कुछ तय कर लिया - हमने पहली से आखिरी तक फिर से जाँच की। केवल बादउत्तरों को देखो।

गणना करें:

क्या आपने फैसला कर लिया?

आप से मेल खाने वाले उत्तरों की तलाश में। मैंने उन्हें विशेष रूप से एक गड़बड़ी में लिखा था, प्रलोभन से दूर, इसलिए बोलने के लिए ... ये रहे, उत्तर, अर्धविराम के साथ लिखे गए।

0; 17/22; 3/4; 2/5; 1; 25.

और अब हम निष्कर्ष निकालते हैं। अगर सब कुछ काम कर गया - आपके लिए खुश! भिन्नों के साथ प्राथमिक गणना आपकी समस्या नहीं है! आप अधिक गंभीर चीजें कर सकते हैं। अगर नहीं...

तो आपको दो समस्याओं में से एक है। या दोनों एक साथ।) ज्ञान की कमी और (या) असावधानी। लेकिन इस व्याख्या करने योग्य समस्या।

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

पाठ सामग्री

समान हर के साथ भिन्न जोड़ना

भिन्नों को जोड़ना दो प्रकार का होता है:

  1. समान हर के साथ भिन्न जोड़ना
  2. भिन्न हर के साथ भिन्न जोड़ना

आइए समान हर वाले भिन्नों को जोड़कर प्रारंभ करें। यहाँ सब कुछ सरल है। समान हर के साथ भिन्न जोड़ने के लिए, आपको उनके अंशों को जोड़ना होगा, और हर को अपरिवर्तित छोड़ना होगा। उदाहरण के लिए, आइए भिन्नों को जोड़ें और . हम अंश जोड़ते हैं, और हर को अपरिवर्तित छोड़ देते हैं:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो चार भागों में विभाजित है। यदि आप पिज़्ज़ा में पिज़्ज़ा मिलाते हैं, तो आपको पिज़्ज़ा मिलता है:

उदाहरण 2भिन्न जोड़ें और .

उत्तर एक अनुचित अंश है। यदि कार्य का अंत आता है, तो यह अनुचित अंशों से छुटकारा पाने के लिए प्रथागत है। एक अनुचित भिन्न से छुटकारा पाने के लिए, आपको उसमें पूरे भाग का चयन करना होगा। हमारे मामले में, पूर्णांक भाग आसानी से आवंटित किया जाता है - दो को दो से विभाजित करना एक के बराबर होता है:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो दो भागों में विभाजित है। यदि आप पिज्जा में अधिक पिज्जा जोड़ते हैं, तो आपको एक पूरा पिज्जा मिलता है:

उदाहरण 3. भिन्न जोड़ें और .

फिर से, अंश जोड़ें, और हर को अपरिवर्तित छोड़ दें:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो तीन भागों में बांटा गया है। यदि आप पिज्जा में अधिक पिज्जा जोड़ते हैं, तो आपको पिज्जा मिलता है:

उदाहरण 4व्यंजक का मान ज्ञात कीजिए

यह उदाहरण पिछले वाले की तरह ही हल किया गया है। अंशों को जोड़ा जाना चाहिए और हर को अपरिवर्तित छोड़ दिया जाना चाहिए:

आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज़्ज़ा में पिज़्ज़ा जोड़ते हैं और अधिक पिज़्ज़ा जोड़ते हैं, तो आपको 1 संपूर्ण पिज़्ज़ा और अधिक पिज़्ज़ा मिलता है।

जैसा कि आप देख सकते हैं, समान हर वाले भिन्नों को जोड़ना मुश्किल नहीं है। निम्नलिखित नियमों को समझना पर्याप्त है:

  1. समान हर के साथ भिन्न जोड़ने के लिए, आपको उनके अंशों को जोड़ना होगा, और हर को अपरिवर्तित छोड़ना होगा;

भिन्न हर के साथ भिन्न जोड़ना

अब हम सीखेंगे कि भिन्न हरों वाली भिन्नों को कैसे जोड़ा जाता है। भिन्नों को जोड़ते समय, उन भिन्नों के हर समान होने चाहिए। लेकिन वे हमेशा एक जैसे नहीं होते हैं।

उदाहरण के लिए, भिन्नों को जोड़ा जा सकता है क्योंकि उनके हर समान होते हैं।

लेकिन भिन्नों को एक साथ नहीं जोड़ा जा सकता, क्योंकि इन भिन्नों के हर अलग-अलग होते हैं। ऐसे मामलों में, भिन्नों को समान (सामान्य) हर में घटाया जाना चाहिए।

भिन्नों को एक ही हर में कम करने के कई तरीके हैं। आज हम उनमें से केवल एक पर विचार करेंगे, क्योंकि बाकी विधियाँ एक शुरुआत के लिए जटिल लग सकती हैं।

इस पद्धति का सार इस तथ्य में निहित है कि दोनों भिन्नों के हर के पहले (LCM) की तलाश की जाती है। फिर एलसीएम को पहले अंश के हर से विभाजित किया जाता है और पहला अतिरिक्त कारक प्राप्त होता है। वे दूसरे भिन्न के साथ भी ऐसा ही करते हैं - LCM को दूसरे भिन्न के हर से विभाजित किया जाता है और दूसरा अतिरिक्त गुणनखंड प्राप्त किया जाता है।

फिर भिन्नों के अंश और हर को उनके अतिरिक्त गुणनखंडों से गुणा किया जाता है। इन क्रियाओं के परिणामस्वरूप, भिन्न हर वाले भिन्न भिन्नों में बदल जाते हैं जिनके हर समान होते हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे जोड़ना है।

उदाहरण 1. भिन्न जोड़ें और

सबसे पहले, हम दोनों भिन्नों के हरों में से सबसे छोटा उभयनिष्ठ गुणज पाते हैं। पहली भिन्न का हर संख्या 3 है, और दूसरी भिन्न का हर संख्या 2 है। इन संख्याओं का सबसे छोटा सामान्य गुणज 6 है।

एलसीएम (2 और 3) = 6

अब वापस भिन्नों पर और . सबसे पहले, हम एलसीएम को पहले अंश के हर से विभाजित करते हैं और पहला अतिरिक्त कारक प्राप्त करते हैं। LCM संख्या 6 है, और पहली भिन्न का हर 3 संख्या है। 6 को 3 से भाग देने पर हमें 2 प्राप्त होता है।

परिणामी संख्या 2 पहला अतिरिक्त कारक है। हम इसे पहले अंश में लिखते हैं। ऐसा करने के लिए, हम भिन्न के ऊपर एक छोटी तिरछी रेखा बनाते हैं और इसके ऊपर पाया गया अतिरिक्त कारक लिखते हैं:

हम दूसरे अंश के साथ भी ऐसा ही करते हैं। हम LCM को दूसरे भिन्न के हर से भाग देते हैं और दूसरा अतिरिक्त गुणनखंड प्राप्त करते हैं। LCM संख्या 6 है, और दूसरी भिन्न का हर 2 संख्या है। 6 को 2 से भाग देने पर हमें 3 प्राप्त होता है।

परिणामी संख्या 3 दूसरा अतिरिक्त कारक है। हम इसे दूसरे अंश में लिखते हैं। फिर से, हम दूसरी भिन्न के ऊपर एक छोटी तिरछी रेखा बनाते हैं और इसके ऊपर पाया गया अतिरिक्त गुणनखंड लिखते हैं:

अब हम जोड़ने के लिए पूरी तरह तैयार हैं। यह अंशों के अंशों और हरों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

गौर से देखिए कि हम क्या हासिल कर चुके हैं। हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके हर समान थे। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे जोड़ना है। आइए इस उदाहरण को अंत तक पूरा करें:

इस प्रकार उदाहरण समाप्त होता है। जोड़ने के लिए यह पता चला है।

आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज़्ज़ा में पिज़्ज़ा जोड़ते हैं, तो आपको एक पूरा पिज़्ज़ा और दूसरा पिज़्ज़ा का छठा हिस्सा मिलता है:

भिन्नों को समान (सामान्य) हर में कम करना भी एक चित्र का उपयोग करके चित्रित किया जा सकता है। भिन्नों को और एक सामान्य हर में लाने पर, हमें भिन्न और . इन दो भिन्नों को पिज्जा के समान स्लाइस द्वारा दर्शाया जाएगा। फर्क सिर्फ इतना होगा कि इस बार उन्हें बराबर शेयरों (एक ही हर में घटाकर) में बांटा जाएगा।

पहला चित्र एक भिन्न दिखाता है (छह में से चार टुकड़े) और दूसरी तस्वीर एक भिन्न (छह में से तीन टुकड़े) दिखाती है। इन टुकड़ों को एक साथ रखने पर हमें (छः में से सात टुकड़े) मिलते हैं। यह भिन्न गलत है, इसलिए हमने इसमें पूर्णांक भाग को हाइलाइट किया है। परिणाम था (एक पूरा पिज्जा और दूसरा छठा पिज्जा)।

ध्यान दें कि हमने इस उदाहरण को बहुत अधिक विस्तार से चित्रित किया है। पर शिक्षण संस्थानइतने विस्तृत तरीके से लिखने की प्रथा नहीं है। आपको दोनों हरों और उनके लिए अतिरिक्त कारकों के एलसीएम को जल्दी से खोजने में सक्षम होने की आवश्यकता है, साथ ही आपके अंश और हर द्वारा पाए गए अतिरिक्त कारकों को जल्दी से गुणा करें। स्कूल में रहते हुए, हमें इस उदाहरण को इस प्रकार लिखना होगा:

लेकिन वहाँ भी है पीछे की ओरपदक यदि गणित के अध्ययन के पहले चरणों में विस्तृत नोट्स नहीं बनाए जाते हैं, तो इस तरह के प्रश्न "वह संख्या कहाँ से आती है?", "अंश अचानक पूरी तरह से भिन्न भिन्नों में क्यों बदल जाते हैं? «.

भिन्न हर के साथ भिन्न जोड़ना आसान बनाने के लिए, आप निम्न चरण-दर-चरण निर्देशों का उपयोग कर सकते हैं:

  1. भिन्नों के हरों का LCM ज्ञात कीजिए;
  2. प्रत्येक भिन्न के हर से LCM को विभाजित करें और प्रत्येक भिन्न के लिए एक अतिरिक्त गुणक प्राप्त करें;
  3. भिन्नों के अंशों और हरों को उनके अतिरिक्त गुणनखंडों से गुणा करें;
  4. समान भाजक वाले भिन्न जोड़ें;
  5. यदि उत्तर गलत भिन्न निकला हो, तो उसके पूरे भाग का चयन करें;

उदाहरण 2व्यंजक का मान ज्ञात कीजिए .

आइए ऊपर दिए गए निर्देशों का उपयोग करें।

चरण 1. भिन्नों के हरों का लघुत्तम समापवर्त्य ज्ञात कीजिए

दोनों भिन्नों के हरों का LCM ज्ञात कीजिए। भिन्नों के हर संख्या 2, 3 और 4 . हैं

चरण 2. एलसीएम को प्रत्येक भिन्न के हर से विभाजित करें और प्रत्येक भिन्न के लिए एक अतिरिक्त गुणक प्राप्त करें

एलसीएम को पहले भिन्न के हर से विभाजित करें। एलसीएम संख्या 12 है, और पहली भिन्न का हर संख्या 2 है। 12 को 2 से विभाजित करने पर, हमें 6 मिलता है। हमें पहला अतिरिक्त गुणनखंड 6 मिलता है। हम इसे पहले भिन्न के ऊपर लिखते हैं:

अब हम LCM को दूसरी भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और दूसरी भिन्न का हर संख्या 3 है। 12 को 3 से विभाजित करने पर, हमें 4 मिलता है। हमें दूसरा अतिरिक्त गुणनखंड 4 मिलता है। हम इसे दूसरे भिन्न के ऊपर लिखते हैं:

अब हम LCM को तीसरे भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और तीसरे भिन्न का हर 4 संख्या है। 12 को 4 से विभाजित करने पर, हमें 3 मिलता है। हमें तीसरा अतिरिक्त गुणनखंड 3 मिलता है। हम इसे तीसरे भिन्न के ऊपर लिखते हैं:

चरण 3. भिन्नों के अंशों और हरों को अपने अतिरिक्त गुणनखंडों से गुणा करें

हम अंशों और हरों को अपने अतिरिक्त कारकों से गुणा करते हैं:

चरण 4. भिन्नों को जोड़ें जिनमें समान हर हों

हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके समान (सामान्य) भाजक हैं। इन अंशों को जोड़ना बाकी है। जोड़ें:

जोड़ एक पंक्ति में फिट नहीं हुआ, इसलिए हमने शेष व्यंजक को अगली पंक्ति में स्थानांतरित कर दिया। गणित में इसकी अनुमति है। जब कोई व्यंजक एक पंक्ति पर फिट नहीं बैठता है, तो उसे अगली पंक्ति में ले जाया जाता है, और पहली पंक्ति के अंत में और एक नई पंक्ति की शुरुआत में एक समान चिह्न (=) लगाना आवश्यक है। दूसरी पंक्ति पर समान चिह्न इंगित करता है कि यह उस व्यंजक की निरंतरता है जो पहली पंक्ति पर था।

चरण 5. यदि उत्तर गलत भिन्न निकला हो, तो उसमें पूरे भाग का चयन करें

हमारा उत्तर एक अनुचित भिन्न है। हमें इसके पूरे हिस्से को अलग करना होगा। हम हाइलाइट करते हैं:

जवाब मिला

समान हर वाले भिन्नों का घटाव

अंश घटाव दो प्रकार के होते हैं:

  1. समान हर वाले भिन्नों का घटाव
  2. भिन्न हर के साथ भिन्नों का घटाव

सबसे पहले, आइए जानें कि समान हर वाले भिन्नों को कैसे घटाना है। यहाँ सब कुछ सरल है। एक भिन्न से दूसरे को घटाने के लिए, आपको दूसरे भिन्न के अंश को पहले भिन्न के अंश से घटाना होगा, और हर को वही छोड़ देना होगा।

उदाहरण के लिए, आइए व्यंजक का मान ज्ञात करें। इस उदाहरण को हल करने के लिए, पहले अंश के अंश से दूसरे अंश के अंश को घटाना आवश्यक है, और हर को अपरिवर्तित छोड़ दें। चलो इसे करते हैं:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो चार भागों में विभाजित है। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है:

उदाहरण 2व्यंजक का मान ज्ञात कीजिए।

फिर से, पहले अंश के अंश से, दूसरे अंश के अंश को घटाएं, और हर को अपरिवर्तित छोड़ दें:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो तीन भागों में बांटा गया है। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है:

उदाहरण 3व्यंजक का मान ज्ञात कीजिए

यह उदाहरण पिछले वाले की तरह ही हल किया गया है। पहले भिन्न के अंश से, आपको शेष भिन्नों के अंशों को घटाना होगा:

जैसा कि आप देख सकते हैं, समान हर वाले भिन्नों को घटाने में कुछ भी जटिल नहीं है। निम्नलिखित नियमों को समझना पर्याप्त है:

  1. एक भिन्न से दूसरे को घटाने के लिए, आपको दूसरे भिन्न के अंश को पहले भिन्न के अंश से घटाना होगा, और हर को अपरिवर्तित छोड़ना होगा;
  2. यदि उत्तर गलत भिन्न निकला, तो आपको उसमें पूरे भाग का चयन करने की आवश्यकता है।

भिन्न हर के साथ भिन्नों का घटाव

उदाहरण के लिए, भिन्न में से भिन्न को घटाया जा सकता है, क्योंकि इन भिन्नों के हर समान होते हैं। लेकिन भिन्न में से भिन्न को घटाया नहीं जा सकता, क्योंकि इन भिन्नों के हर अलग-अलग होते हैं। ऐसे मामलों में, भिन्नों को समान (सामान्य) हर में घटाया जाना चाहिए।

सार्व भाजक उसी सिद्धांत के अनुसार पाया जाता है जिसका उपयोग हमने भिन्न हर के साथ भिन्नों को जोड़ते समय किया था। सबसे पहले दोनों भिन्नों के हरों का LCM ज्ञात कीजिए। फिर एलसीएम को पहले अंश के हर से विभाजित किया जाता है और पहला अतिरिक्त कारक प्राप्त होता है, जिसे पहले अंश के ऊपर लिखा जाता है। इसी तरह, एलसीएम को दूसरे अंश के हर से विभाजित किया जाता है और दूसरा अतिरिक्त कारक प्राप्त होता है, जिसे दूसरे अंश के ऊपर लिखा जाता है।

फिर भिन्नों को उनके अतिरिक्त कारकों से गुणा किया जाता है। इन संक्रियाओं के परिणामस्वरूप, भिन्न हर वाले भिन्न भिन्नों में बदल जाते हैं जिनके हर समान होते हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है।

उदाहरण 1एक व्यंजक का मान ज्ञात कीजिए:

इन भिन्नों के अलग-अलग हर होते हैं, इसलिए आपको उन्हें समान (सामान्य) हर में लाना होगा।

सबसे पहले, हम दोनों भिन्नों के हरों का LCM ज्ञात करते हैं। पहली भिन्न का हर संख्या 3 है, और दूसरी भिन्न का हर संख्या 4 है। इन संख्याओं का सबसे छोटा सामान्य गुणज 12 है।

एलसीएम (3 और 4) = 12

अब वापस भिन्नों पर और

आइए पहले भिन्न के लिए एक अतिरिक्त गुणनखंड खोजें। ऐसा करने के लिए, हम एलसीएम को पहले अंश के हर से विभाजित करते हैं। LCM संख्या 12 है, और पहली भिन्न का हर संख्या 3 है। 12 को 3 से विभाजित करने पर, हमें 4 मिलता है। हम पहली भिन्न के ऊपर चार लिखते हैं:

हम दूसरे अंश के साथ भी ऐसा ही करते हैं। हम LCM को दूसरे भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और दूसरी भिन्न का हर 4 संख्या है। 12 को 4 से विभाजित करने पर, हमें 3 मिलता है। दूसरे भिन्न पर एक तिहाई लिखें:

अब हम सब घटाव के लिए तैयार हैं। यह भिन्नों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके हर समान थे। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है। आइए इस उदाहरण को अंत तक पूरा करें:

जवाब मिला

आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है।

यह समाधान का विस्तृत संस्करण है। स्कूल में होने के कारण, हमें इस उदाहरण को छोटे तरीके से हल करना होगा। ऐसा समाधान इस तरह दिखेगा:

भिन्नों की कमी और एक सामान्य हर को भी एक चित्र का उपयोग करके चित्रित किया जा सकता है। इन भिन्नों को एक उभयनिष्ठ हर में लाने पर, हमें भिन्न और . इन भिन्नों को समान पिज़्ज़ा स्लाइस द्वारा दर्शाया जाएगा, लेकिन इस बार उन्हें समान भिन्नों में विभाजित किया जाएगा (एक ही हर में घटाकर):

पहला चित्र एक अंश दिखाता है (बारह में से आठ टुकड़े), और दूसरी तस्वीर एक अंश (बारह में से तीन टुकड़े) दिखाती है। आठ टुकड़ों में से तीन टुकड़े करने से हमें बारह में से पांच टुकड़े मिलते हैं। अंश इन पांच टुकड़ों का वर्णन करता है।

उदाहरण 2व्यंजक का मान ज्ञात कीजिए

इन भिन्नों के अलग-अलग हर होते हैं, इसलिए आपको पहले उन्हें समान (सामान्य) हर में लाना होगा।

इन भिन्नों के हरों का LCM ज्ञात कीजिए।

भिन्नों के हर संख्याएँ 10, 3 और 5 हैं। इन संख्याओं का न्यूनतम सामान्य गुणज 30 . है

एलसीएम(10, 3, 5) = 30

अब हम प्रत्येक भिन्न के लिए अतिरिक्त गुणनखंड पाते हैं। ऐसा करने के लिए, हम एलसीएम को प्रत्येक भिन्न के हर से विभाजित करते हैं।

आइए पहले भिन्न के लिए एक अतिरिक्त गुणनखंड खोजें। LCM संख्या 30 है, और पहली भिन्न का हर 10 संख्या है। 30 को 10 से विभाजित करने पर, हमें पहला अतिरिक्त गुणनखंड 3 मिलता है। हम इसे पहले भिन्न पर लिखते हैं:

अब हम दूसरी भिन्न के लिए एक अतिरिक्त गुणनखंड पाते हैं। LCM को दूसरे भिन्न के हर से भाग दें। LCM संख्या 30 है, और दूसरी भिन्न का हर संख्या 3 है। 30 को 3 से विभाजित करने पर, हमें दूसरा अतिरिक्त गुणनखंड 10 मिलता है। हम इसे दूसरे भिन्न के ऊपर लिखते हैं:

अब हम तीसरे भिन्न के लिए एक अतिरिक्त गुणनखंड पाते हैं। एलसीएम को तीसरे भिन्न के हर से विभाजित करें। LCM संख्या 30 है, और तीसरे भिन्न का हर 5 है। 30 को 5 से विभाजित करने पर, हमें तीसरा अतिरिक्त गुणनखंड 6 मिलता है। हम इसे तीसरे भिन्न के ऊपर लिखते हैं:

अब सब कुछ घटाव के लिए तैयार है। यह भिन्नों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके समान (सामान्य) भाजक हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है। आइए इस उदाहरण को समाप्त करें।

उदाहरण की निरंतरता एक पंक्ति में फिट नहीं होगी, इसलिए हम निरंतरता को अगली पंक्ति में ले जाते हैं। नई लाइन पर बराबर चिह्न (=) के बारे में मत भूलना:

उत्तर सही अंश निकला, और सब कुछ हमें सूट करता है, लेकिन यह बहुत बोझिल और बदसूरत है। हमें इसे आसान बनाना चाहिए। क्या किया जा सकता है? आप इस अंश को कम कर सकते हैं।

किसी भिन्न को कम करने के लिए, आपको उसके अंश और हर को (gcd) संख्याओं 20 और 30 से विभाजित करना होगा।

तो, हम संख्या 20 और 30 की जीसीडी पाते हैं:

अब हम अपने उदाहरण पर लौटते हैं और अंश के अंश और हर को जीसीडी से विभाजित करते हैं, यानी 10 से

जवाब मिला

भिन्न को किसी संख्या से गुणा करना

किसी भिन्न को किसी संख्या से गुणा करने के लिए, आपको दिए गए भिन्न के अंश को इस संख्या से गुणा करना होगा, और हर को वही छोड़ देना होगा।

उदाहरण 1. अंश को संख्या 1 से गुणा करें।

भिन्न के अंश को संख्या 1 . से गुणा करें

प्रविष्टि को आधा 1 बार लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि आप 1 बार पिज़्ज़ा लेते हैं, तो आपको पिज़्ज़ा मिलता है

गुणन के नियमों से, हम जानते हैं कि यदि गुणक और गुणक को आपस में बदल दिया जाए, तो गुणनफल नहीं बदलेगा। यदि व्यंजक को , के रूप में लिखा जाता है, तो गुणनफल अभी भी के बराबर होगा। फिर से, एक पूर्णांक और एक भिन्न को गुणा करने का नियम काम करता है:

इस प्रविष्टि को इकाई का आधा भाग लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि 1 पूरा पिज्जा है और हम उसका आधा हिस्सा लेते हैं, तो हमारे पास पिज्जा होगा:

उदाहरण 2. व्यंजक का मान ज्ञात कीजिए

भिन्न के अंश को 4 . से गुणा करें

उत्तर एक अनुचित अंश है। आइए इसका एक पूरा हिस्सा लें:

व्यंजक को दो चौथाई 4 बार लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि आप 4 बार पिज्जा लेते हैं, तो आपको दो पूरे पिज्जा मिलते हैं।

और यदि हम गुणक और गुणक को स्थानों में अदला-बदली करते हैं, तो हमें व्यंजक प्राप्त होता है। यह भी 2 के बराबर होगा। इस अभिव्यक्ति को चार पूरे पिज्जा से दो पिज्जा लेने के रूप में समझा जा सकता है:

भिन्नों का गुणन

भिन्नों को गुणा करने के लिए, आपको उनके अंशों और हरों को गुणा करना होगा। यदि उत्तर गलत भिन्न है, तो आपको उसमें पूरे भाग का चयन करना होगा।

उदाहरण 1व्यंजक का मान ज्ञात कीजिए।

जवाब मिला। इस अंश को कम करना वांछनीय है। भिन्न को 2 से कम किया जा सकता है। फिर अंतिम समाधान निम्नलिखित रूप लेगा:

अभिव्यक्ति को आधा पिज्जा से पिज्जा लेने के रूप में समझा जा सकता है। मान लीजिए कि हमारे पास आधा पिज्जा है:

इस आधे से दो तिहाई कैसे लें? सबसे पहले आपको इस आधे हिस्से को तीन बराबर भागों में बांटना होगा:

और इन तीन टुकड़ों में से दो ले लो:

हमें पिज्जा मिलेगा। याद रखें कि पिज्जा कैसा दिखता है जिसे तीन भागों में बांटा गया है:

इस पिज़्ज़ा से एक स्लाइस और हमने जो दो स्लाइस लिए हैं, उनके आयाम समान होंगे:

दूसरे शब्दों में हम बात कर रहे हैं उसी पिज़्ज़ा साइज़ की। इसलिए, व्यंजक का मान है

उदाहरण 2. व्यंजक का मान ज्ञात कीजिए

पहले भिन्न के अंश को दूसरे भिन्न के अंश से और पहले भिन्न के हर को दूसरे भिन्न के हर से गुणा करें:

उत्तर एक अनुचित अंश है। आइए इसका एक पूरा हिस्सा लें:

उदाहरण 3व्यंजक का मान ज्ञात कीजिए

पहले भिन्न के अंश को दूसरे भिन्न के अंश से और पहले भिन्न के हर को दूसरे भिन्न के हर से गुणा करें:

उत्तर सही अंश निकला, लेकिन घटाया जाए तो अच्छा होगा। इस भिन्न को कम करने के लिए, आपको इस भिन्न के अंश और हर को सबसे बड़े से भाग देना होगा सामान्य भाजक(जीसीडी) संख्या 105 और 450।

तो, आइए 105 और 450 की संख्याओं का GCD ज्ञात करें:

अब हम अपने उत्तर के अंश और हर को उस GCD से भाग देते हैं जो हमें अब मिली है, यानी 15 से

एक पूर्णांक को भिन्न के रूप में निरूपित करना

किसी भी पूर्ण संख्या को भिन्न के रूप में दर्शाया जा सकता है। उदाहरण के लिए, संख्या 5 को इस रूप में दर्शाया जा सकता है। इससे, पाँच का अर्थ नहीं बदलेगा, क्योंकि अभिव्यक्ति का अर्थ है "पाँच की संख्या एक से विभाजित", और यह, जैसा कि आप जानते हैं, पाँच के बराबर है:

रिवर्स नंबर

अब हम परिचित होंगे दिलचस्प विषयगणित में। इसे "रिवर्स नंबर" कहा जाता है।

परिभाषा। संख्या के विपरीत वह संख्या है जिसे गुणा करने पर एक इकाई देता है।

आइए एक चर के बजाय इस परिभाषा में स्थानापन्न करें संख्या 5 और परिभाषा को पढ़ने का प्रयास करें:

संख्या के विपरीत 5 वह संख्या है जिसे गुणा करने पर 5 एक इकाई देता है।

क्या ऐसी कोई संख्या ज्ञात करना संभव है जिसे 5 से गुणा करने पर एक प्राप्त हो? यह पता चला है कि आप कर सकते हैं। आइए पाँच को भिन्न के रूप में निरूपित करें:

फिर इस भिन्न को अपने आप से गुणा करें, बस अंश और हर की अदला-बदली करें। दूसरे शब्दों में, आइए भिन्न को अपने आप से गुणा करें, केवल उल्टा:

इसका क्या परिणाम होगा? यदि हम इस उदाहरण को हल करना जारी रखते हैं, तो हमें एक मिलता है:

इसका मतलब है कि संख्या 5 का विलोम वह संख्या है, क्योंकि जब 5 को एक से गुणा किया जाता है, तो एक प्राप्त होता है।

व्युत्क्रम किसी अन्य पूर्णांक के लिए भी पाया जा सकता है।

आप किसी अन्य भिन्न का व्युत्क्रम भी ज्ञात कर सकते हैं। ऐसा करने के लिए, इसे पलटने के लिए पर्याप्त है।

एक संख्या से भिन्न का विभाजन

मान लीजिए कि हमारे पास आधा पिज्जा है:

आइए इसे दो के बीच समान रूप से विभाजित करें। प्रत्येक को कितने पिज्जा मिलेंगे?

यह देखा जा सकता है कि पिज्जा के आधे हिस्से को विभाजित करने के बाद, दो बराबर टुकड़े प्राप्त हुए, जिनमें से प्रत्येक एक पिज्जा बनाता है। तो सभी को पिज्जा मिलता है।

भिन्नों का विभाजन व्युत्क्रम का उपयोग करके किया जाता है। व्युत्क्रम आपको विभाजन को गुणा से बदलने की अनुमति देता है।

किसी भिन्न को किसी संख्या से भाग देने के लिए, आपको इस भिन्न को भाजक के व्युत्क्रम से गुणा करना होगा।

इस नियम का उपयोग करते हुए, हम अपने आधे पिज़्ज़ा के विभाजन को दो भागों में लिखेंगे।

तो, आपको भिन्न को संख्या 2 से विभाजित करने की आवश्यकता है। यहाँ भाज्य भिन्न है और भाजक 2 है।

किसी भिन्न को संख्या 2 से भाग देने के लिए, आपको इस भिन्न को भाजक 2 के व्युत्क्रम से गुणा करना होगा। भाजक 2 का व्युत्क्रम भिन्न है। तो आपको से गुणा करना होगा